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A CURIOUS GAME

* Playing up is a dominant

strategy for row player

* So column player would
play left

* Therefore, (1,1) is the

0,0 | 2,1
only Nash equilibrium 7

outcome
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COMMITMENT IS GOOD

* Suppose the game is played
as follows:

o Row player commits to
playing a row 1 ’ 1 370

o Column player observes the
commitment and chooses 2 1
column O’O ?

 Row player can commit to
playing down!
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COMMITMENT IS GOOD

* By committing to a mixed
strategy, row player can 0 1

guarantee a reward of 2.5

e We assume that the 49
follower breaks ties in
favor of the leader

* This is called a strong ol

Stackelberg equilibrium
(SSE)
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COMPUTING STACKELBERG

e Theorem |Conitzer and Sandholm 2006|:

In 2-player normal form games, an SSE
can be found in polynomial time
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PROOF OF THEOREM

* For each pure follower strategy s,, we compute via
the LP below a strategy x; for the leader such that

o Playing s, is a best response for the follower

o Under this constraint, x; is optimal

* Choose x; that maximizes leader value

max s es X1 (S1)Uy (51, S2)

s.t. Vs; €S, X esX1(51)uz(51,52) = Xs es X1(51)uz (51, 52)

Zslesx1(51) =1
Vs; € S5,x,(s1) € [0,1]
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APPLICATION: SECURITY

QUEEN

INATIONAL

PARK

Defender (leader) commits to a randomized
allocation of security resources, attacker
(follower) best responds
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Set of targets T = {1, ...,n}

Set of m security resources
R available to the defender
(leader)

Set of schedules ¥ € 27

Resource r can be assigned

to one of the schedules in
A(r) € X

Attacker chooses one target
to attack
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SECURITY GAMES
 For each target t, there are four
numbers: u}(t) = u;(t),
and u} (t) < ugz(t)
 Randomized defender strategy
induces coverage probabilities
¢ = (€1, Cn)
* The utilities to the
defender /attacker under c
if target t is attacked are
ug(t,e) =ui (@) - c, +uzj(®)(1—cp) T
ug(t,c) =ug(t) - +ug (1)1 —cyp)
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______

EXAMPLE

Attacker Defender

Target Covered | Uncovered | Covered | Uncovered
1 0 1/2 0 -1
2 0 1 0 -1

Poll 1: What is the probability of assigning
the resource to {1} in an SSE?
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ANOTH:

LR EXAMPL]

-

Attacker Defender

Target Covered | Uncovered | Covered | Uncovered
1 0 4 0 -2
2 0 3 0 -1
3 0 2 0 -9

Poll 2: What is the probability of assigning

the resource to {1,2} in an SSI
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This is a 2-player

Stackelberg game,

SO we can compute
an optimal strategy
for the defender in

polynomial time...?
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SOLVING SECURITY GAMES

* Consider the case of X =T, i.e., resources
are assigned to individual targets, i.e.,
schedules have size 1

* Nevertheless, number of leader strategies is
exponential

* Theorem |Korzhyk et al. 2010|: Optimal
leader strategy can be computed in poly
time
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A COMPACT LP

 LP formulation
similar to previous

max u,;(t*, c
one a(t’, c)

s.t. VreRVteEA([),0<c <1
 Advantage:

logarithmic in VteT,c = z Cre =1
+#leader strategies reRr:teA(r)

* (Question: Do Vr € R, Z crp <1
probabilities S '
correspond to Vt € T,uy(t,c) < uy(t*c)
strategy’?

 Answer: Yes!
Example in next slide
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GENERALIZING
e What about schedules of

size 27
* Air Marshals domain has " &
such schedules: WA
. . . . 0.5\\\ A /
outgoing+incoming flight
gomg-+ g 1hg Iﬁ A
* Previous apporoach fails YA 0>

________________

* Theorem [Korzhyk et al.
2010]: problem is NP-hard
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Newsweek n.iona news
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The Element of Surprise

To help combat the terrorism threat, officials at Los Angeles Inter
Airport are introducing a bold new idea into their arsenal: random
of security checkpoints. Can game theory help keep us safe?

WEB EXCLUSIVE

By Andrew Murr
Nawsweek
Updated: 1:00 p.m. PT Sept 2B, 2007

Sept. 28, 2007 - Security officials at Los Angeles
International Airport now have a new weapon in
their fight against terrorism: complete, baffling
randomness. Amnxious to thwart future terror
attacks in the early stages while plotters are
casing the airport, LAX secunty patrols have
begun using a new software program called
ARMOR, NEWSWEEK has learned, to make the
placement of security checkpoints completely
unpredictable. Now all airport security officials
have to do is press a button labeled
"Randomize,” and they can throw a sort of digital cloak of invisibility
over where they place the cops' antiterror checkpoints on any given
day.

Security forces work the sidewalk .
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Rangers Use Artificial Intelligence
to Fight Poachers

Emerging technology may help wildlife officials beat back traffickers.

o ¢ N

+

Antipoaching patrols like this team at the Lewa Wildlife Conservancy in Kenya
may soon use Al technology to stay one step ahead of criminals.

By Jackie Snow

Unlike other Al technologies developed to replace workers, PAWS is a tool
for rangers. Tambe says that while PAWS is better at taking all data into
account and providing truly random patrols, humans are better at other

analyses and following up on leads.
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LIMITATIONS

 The defender knows the utility function of the
attacker

o Solution: machine learning

 The attacker pertectly observes the defender’s
randomized strategy
o MDPs, although this may not be a major concern
 The attacker is perfectly rational, i.e., best
responds to the defender’s strategy

o Solution: bounded rationality models
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LEARNING TO PLAY

* Suppose the defender does not know the
attacker’s utility function

 The defender can interact with the attacker by
playing a strategy and observing the attacker’s
best response

* Theorem |Haghtalab et al. 2014|: For any
€,0 > 0, with probability 1 — 9, it is possible to
learn a defender strategy that is optimal up to €
with a number of best-response queries that is
polynomial in n and logarithmic in 1/¢, 1/0
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LEARNING TO PLAY

e We can reformulate the LP as

max Ug (t, C)
s.t. t 1s attacked under ¢
c is implementable

e It holds that:

o  The objective function is linear in ¢
o  The feasible region P; is convex

o  There is a membership oracle for the feasible region

* Result now follows using an algorithm for optimizing a
linear function in a convex region using membership
queries |Kalai and Vempala 2006
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LEARNING TO PLAY

Attacker Defender
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TESTING BOUNDED RATIONALITY

Game 1 Caught!
Total: $1.4 = $1.5 - $0.1

0.2
Reward if Penalty if & Money
successful caught by . eamned if
rangers successful
. 9 o
[$) (8)
10 -5 0.2
Percentage of Percentage of
success failure
32% 68%

Next Game

Google
< Map data @2014 Google Imagery 2014 DigitalGlobe | Terms of Use | Reporta map eror
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SUMMARY

* Terminology:
o otackelberg game
o otrong Stackelberg equilibrium

o Oecurity game

* Algorithms:
o Multiple LPs algorithm

o Polynomial time algorithm for
singleton schedules
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