

Graduate AI

Game Theory I

Ariel Procaccia (this time)

NORMAL-FORM GAME

- A game in normal form consists of:
 - \circ Set of players $N = \{1, ..., n\}$
 - \circ Strategy set S
 - ∘ For each $i \in N$, utility function $u_i: S^n \to \mathbb{R}$: if each $j \in N$ plays the strategy $s_j \in S$, the utility of player i is $u_i(s_1, ..., s_n)$

THE PRISONER'S DILEMMA

- Two men are charged with a crime
- They are told that:
 - If one rats out and the other does not, the rat will be freed, other jailed for nine years
 - If both rat out, both will be jailed for six years
- They also know that if neither rats out, both will be jailed for one year

THE PRISONER'S DILEMMA

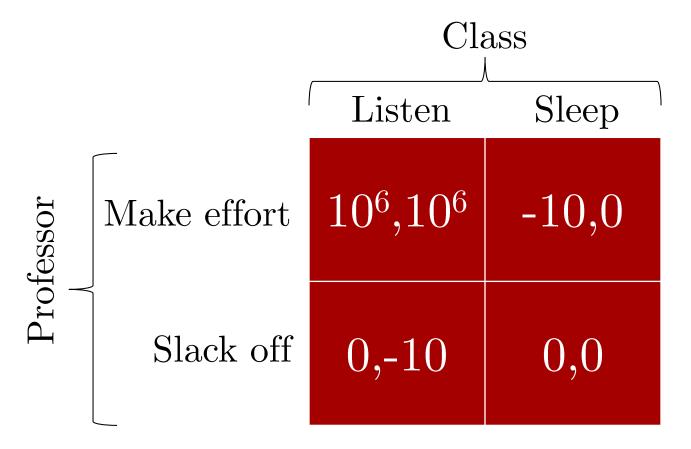
	Cooperate	Defect
Cooperate	-1,-1	-9,0
Defect	0,-9	-6,-6

What would you do?

ON TV

http://youtu.be/S0qjK3TWZE8

THE PROFESSOR'S DILEMMA

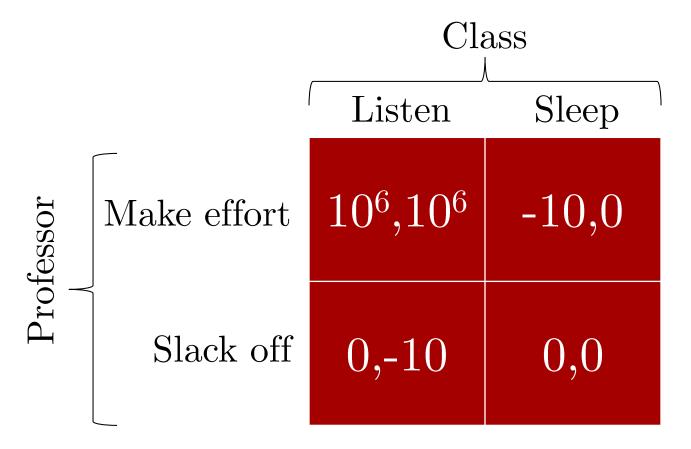


Dominant strategies?

NASH EQUILIBRIUM

- Each player's strategy is a best response to strategies of others
- Formally, a Nash equilibrium is a vector of strategies $s = (s_1 \dots, s_n) \in S^n$ such that for all $i \in N, s_i' \in S$, $u_i(s) \ge u_i(s_1, \dots, s_{i-1}, s'_i, s_{i+1}, \dots, s_n)$

THE PROFESSOR'S DILEMMA



Nash equilibria?

ROCK-PAPER-SCISSORS

ı	R	Р	S
\mathbf{R}	0,0	-1,1	1,-1
Р	1,-1	0,0	-1,1
S	-1,1	1,-1	0,0

Nash equilibria?

MIXED STRATEGIES

- A mixed strategy is a probability distribution over (pure) strategies
- The mixed strategy of player $i \in N$ is x_i , where

$$x_i(s_i) = \Pr[i \text{ plays } s_i]$$

• The utility of player $i \in N$ is

$$u_i(x_1, ..., x_n) = \sum_{(s_1, ..., s_n) \in S^n} u_i(s_1, ..., s_n) \cdot \prod_{j=1}^n x_j(s_j)$$

EXERCISE: MIXED NE

- Exercise: player 1 plays $\left(\frac{1}{2}, \frac{1}{2}, 0\right)$, player 2 plays $\left(0,\frac{1}{2},\frac{1}{2}\right)$. What is u_1 ?
- Exercise: Both players play $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$. What is u_1 ?

	R	Р	S
R	0,0	-1,1	1,-1
Р	1,-1	0,0	-1,1
S	-1,1	1,-1	0,0

EXERCISE: MIXED NE

• Poll 1: Which is a NE?

1.
$$\left(\left(\frac{1}{2},\frac{1}{2},0\right),\left(\frac{1}{2},\frac{1}{2},0\right)\right)$$

$$2. \quad \left(\left(\frac{1}{2}, \frac{1}{2}, 0\right), \left(\frac{1}{2}, 0, \frac{1}{2}\right)\right)$$

3.
$$\left(\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right), \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)\right)$$

$$4. \quad \left(\left(\frac{1}{3}, \frac{2}{3}, 0 \right), \left(\frac{2}{3}, 0, \frac{1}{3} \right) \right)$$

	\mathbb{R}	Р	S
R	0,0	-1,1	1,-1
Р	1,-1	0,0	-1,1
S	-1,1	1,-1	0,0

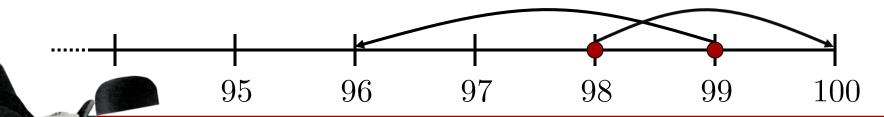
NASH'S THEOREM

• Theorem [Nash, 1950]: In any (finite) game there exists at least one (possibly mixed) Nash equilibrium

What about computing a Nash equilibrium?

DOES NE MAKE SENSE?

- Two players, strategies are {2, ..., 100}
- If both choose the same number, that is what they get
- If one chooses s, the other t, and s < t, the former player gets s + 2, and the latter gets s-2
- Poll 2: What would you choose?



CORRELATED EQUILIBRIUM

- Let $N = \{1,2\}$ for simplicity
- A mediator chooses a pair of strategies (s_1, s_2) according to a distribution p over S^2
- Reveals s_1 to player 1 and s_2 to player 2
- When player 1 gets $s_1 \in S$, he knows that the distribution over strategies of 2 is

$$\Pr[s_2|s_1] = \frac{\Pr[s_1 \land s_2]}{\Pr[s_1]} = \frac{p(s_1, s_2)}{\sum_{s_2' \in S} p(s_1, s_2')}$$

CORRELATED EQUILIBRIUM

• Player 1 is best responding if for all $s_1 \in S$ $\sum_{s_2 \in S} \Pr[s_2 | s_1] u_1(s_1, s_2) \ge \sum_{s_2 \in S} \Pr[s_2 | s_1] u_1(s_1', s_2)$

• Equivalently,

$$\sum_{s_2 \in S} p(s_1, s_2) u_1(s_1, s_2) \ge \sum_{s_2 \in S} p(s_1, s_2) u_1(s_1', s_2)$$

• p is a correlated equilibrium (CE) if both players are best responding

GAME OF CHICKEN

http://youtu.be/u7hZ9jKrwvo

GAME OF CHICKEN

• Social welfare is the sum of utilities

•	Pure NE: (C,D)	and (D,C) ,
	social welfare =	5

• Mixed NE: both (1/2,1/2), social welfare = 4

• Optimal social welfare = 6

	Dare	Chicken
Dare	0,0	4,1
Chicken	1,4	3,3

GAME OF CHICKEN

• Correlated equilibrium:

	/ 1		\Box	\	$\mathbf{\Omega}$
_	1 1	D,:	1)	١.	()
0	()	り 、.) •	U
	•	,		,	

$$\circ$$
 (D,C): $\frac{1}{3}$

$$\circ$$
 (C,D): $\frac{1}{3}$

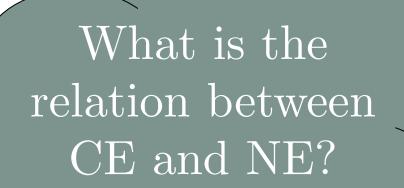
$$\circ$$
 (C,C): $\frac{1}{3}$

	Dare	Chicken
Dare	0,0	4,1
hicken	1,4	3,3

• Social welfare of $CE = \frac{16}{3}$

IMPLEMENTATION OF CE

- Instead of a mediator, use a hat!
- Balls in hat are labeled with "chicken" or "dare", each blindfolded player takes a ball
- Poll 3: Which balls implement the distribution of slide 19?
 - 1. 1 chicken, 1 dare
 - 2. 2 chicken, 1 dare
 - 3. 2 chicken, 2 dare
 - 3 chicken, 2 dare



CE AS LP

• Can compute CE via linear programming in polynomial time!

find
$$\forall s_1, s_2 \in S, p(s_1, s_2)$$

s.t. $\forall s_1, s_1' \in S, \sum_{s_2 \in S} p(s_1, s_2) u_1(s_1, s_2) \ge \sum_{s_2 \in S} p(s_1, s_2) u_1(s_1', s_2)$
 $\forall s_2, s_2' \in S, \sum_{s_1 \in S} p(s_1, s_2) u_2(s_1, s_2) \ge \sum_{s_1 \in S} p(s_1, s_2) u_2(s_1, s_2')$
 $\sum_{s_1, s_2 \in S} p(s_1, s_2) = 1$
 $\forall s_1, s_2 \in S, p(s_1, s_2) \in [0,1]$

SUMMARY

- Terminology:
 - Normal-form game
 - Nash equilibrium
 - Mixed strategies
 - Correlated equilibrium
- Algorithms:
 - LP for CE

