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Adversarial attacks

4

Published as a conference paper at ICLR 2015

+ .007⇥ =

x sign(r
x

J(✓,x, y))
x+

✏sign(r
x

J(✓,x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let ✓ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(✓,x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of ✓, obtaining an optimal max-norm
constrained pertubation of

⌘ = ✏sign (r
x

J(✓,x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y 2 {�1, 1} with P (y = 1) = �
�
w

>
x+ b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

E
x,y⇠pdata⇣(�y(w>

x+ b))

where ⇣(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/

papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.

3

[Szegedy et al., 2014, Goodfellow et al., 2015]



How adversarial attacks work

We are focusing on test time attacks: train on clean data and attackers 
tries to fool the trained classifier at test time

To keep things tractable, we are going to restrict our attention to ℓ∞ norm 
bounded attacks: the adversary is free to manipulate inputs within some 
ℓ∞ ball around the true example

𝑥̃ = 𝑥 + Δ, Δ ∞ ≤ 𝜖

Basic method: given input 𝑥 ∈ 𝒳, output 𝑦 ∈ 𝒴, hypothesis ℎ-: 𝒳 →
𝒴, and loss function ℓ: 𝒴×𝒴 → ℝ+, adjust 𝑥 to maximum loss:

maximize 
∆ ∞≤3

ℓ(ℎ- 𝑥 + Δ , 𝑦)

Other variants we will see shortly (e.g., maximizing specific target class)
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A summary of adversarial example research

🙂 Distillation prevents adversarial attacks! [Papernot et al., 2016]

🙁 No it doesn’t! [Carlini and Wagner, 2017]

🙂 No need to worry given translation/rotation! [Lu et al., 2017] 

🙁 Yes there is! [Athalye and Sutskever, 2017] 

🙂 We have 9 new defenses you can use! [ICLR 2018 papers] 

🙁 Broken before review period had finished! [Athalye et al., 2018]

My view: the attackers are winning, we need to get out of this arms race
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A slightly better summary

Many heuristic methods for defending against against adversarial 
examples [e.g., Goodfellow et al., 2015; Papernot et al., 2016; Madry et 
al., 2017; Tramér et al., 2017; Roy et al., 2017]

• Keep getting broken, unclear if/when we’ll find the right heuristic

Formal methods approaches to verifying networks via tools from SMT, 
integer programming, SAT solving, etc. [e.g., Carlini et al., 2017; Ehlers 
2017; Katz et al., 2017; Huang et al., 2017]

• Limited to small networks by combinatorial optimization

Our work: Tractable, provable defenses against adversarial examples 
via convex relaxations [also related: Raghunathan et al., 2018; Staib and 
Jegelka 2017; Sinha et al., 2017; Hein and Andriushchenko 2017; Peck 
et al, 2017]
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Adversarial examples in the real world
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Sharif et al., 2016

Evtimov et al., 2017

Athalye et al., 2017

Note: only the last one here is possibly an ℓ∞ perturbation



The million dollar question

How can we design (deep) classifiers that are provably robust to 
adversarial attacks?
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Robust optimization

A area of optimization that goes almost 50 years [Soyster, 1973; see Ben-
Tal et al., 2011]

Robust optimization (as applied to machine learning): instead of 
minimizing loss at training points, minimize worst case loss in some ball 
around the points
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minimize
-

 ∑ ℓ(ℎ- 𝑥5 ⋅ 𝑦5)
�

5
minimize

-
 ∑ max

∆ ∞≤3
ℓ(ℎ- 𝑥5 + Δ ⋅ 𝑦5)

�

5

≡  minimize
-

 ∑ ℓ(ℎ- 𝑥5 ⋅ 𝑦5 − 𝜖 𝜃 1)
�

5
(for linear classifiers)



Proof of robust machine learning property

Lemma: For linear hypothesis function ℎ- 𝑥 = 𝜃; 𝑥, binary output 𝑦 ∈
{−1,+1}, and classification loss ℓ ℎ- 𝑥 ⋅ 𝑦

max
∆ ∞≤3

ℓ(ℎ- 𝑥 + Δ ⋅ 𝑦) = ℓ ℎ- 𝑥 ⋅ 𝑦 − 𝜖 𝜃 1

Proof: Because classification loss is monotonic decreasing
max

∆ ∞≤3
ℓ(ℎ- 𝑥 + Δ ⋅ 𝑦) = ℓ min

∆ ∞≤3
ℎ-(𝑥 + Δ) ⋅ 𝑦

                               = ℓ min
∆ ∞≤3

𝜃; 𝑥 + Δ ⋅ 𝑦

Theorem follows from the fact that
min

∆ ∞≤3
𝜃; Δ = −𝜖 𝜃 1

∎
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What to do at test time?

This procedure prevents the possibility of adversarial examples at training 
time, but what about at test time?

Basic idea: If we make a prediction at a point, and this prediction does 
not change within the ℓ∞ ball of 𝜖 around the point, then this cannot be 
an adversarial example (i.e., we have a zero-false negative detector)
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Wong and Kolter, “Provable defenses against adversarial 

examples via the convex adversarial polytope”, 2017
 https://arxiv.org/abs/1711.00851



The trouble with deep networks

In deep networks, the “image” (adversarial polytope) of a norm bounded 
perturbation is non-convex, we can’t easily optimize over it

Our approach: instead, form convex outer bound over the adversarial 
polytope, and perform robust optimization over this region (applies 
specifically to networks with ReLU nonlinearities)
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Convex outer approximations

Optimization over convex outer adversarial polytope provides guarantees 
about robustness to adversarial perturbations

… so, how do we compute and optimize over this bound?
16



Adversarial examples as optimization

Finding the worst-case adversarial perturbation (within true adversarial 
polytope), can be written as a non-convex problem
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minimize
=,= ̂

   (𝑧A)B⋆ −(𝑧A)Btarget

subject to  𝑧1 − 𝑥 ∞ ≤ 𝜖
               𝑧5̂+1 = 𝑊5𝑧5 + 𝑏5, 𝑖 = 1,… ,𝑘 − 1
               𝑧5 = max{𝑧5̂ , 0}, 𝑖 = 2,… ,𝑘 − 1
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Idea #1: Convex bounds on ReLU nonlinearities

Suppose we have some upper and lower bound ℓ, 𝑢 on the values that a 
particular (pre-ReLU) activation can take on, for this particular example 𝑥

Then we can relax the ReLU “constraint” to its convex hull
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ẑ

z



Idea #1: Convex bounds on ReLU nonlinearities

Suppose we have some upper and lower bound ℓ, 𝑢 on the values that a 
particular (pre-ReLU) activation can take on, for this particular example 𝑥

Then we can relax the ReLU “constraint” to its convex hull

22

ℓ u ℓ u
Bounded ReLU set Convex relaxation

ẑ
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               (𝑧5̂, 𝑧5) ∈ 𝒞 ℓ5,𝑢5 , 𝑖 = 2,… ,𝑘 − 1

A linear program!



Idea #2: Exploiting duality

While the previous formulation is nice, it would require solving an LP (with 
the number of variables equal to the number of hidden units in network), 
once for each example, for each SGD step

• (This even ignores how to compute upper and lower bounds ℓ, 𝑢)

We’re going to use the “duality trick”, the fact that any feasible dual 
solution gives a lower bound on LP solution
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True adversarial polytope
Convex outer bound (from ReLU convex hull)
True adversarial polytope
Convex outer bound (from ReLU convex hull)
Bound from dual feasible solution



An amazing property

It turns out that we can compute a (empirically, close to optimal) dual 
feasible solution using a single backward pass through the network
(really a slightly augmented form of the backprop network)

24
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               (𝑧5+1,𝑊5𝑧5 + 𝑏5) ∈ 𝒞(ℓ5,𝑢5)

maximize
Q,R

  𝐽3,T,U 𝜈,𝑥 ≡ − ∑ 𝜈5+1
; 𝑏5 − 𝑥; 𝜈1̂ − 𝜖 𝜈1̂ 1 + ∑ ∑ ℓ5,W 𝜈5,W +

�

W∈ℐY

A−1
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5=1
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layer 𝑖 that can cross zero
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Derivative of ReLU with 
slightly modification on ℐ5
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backprop network
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Robustness penalty (same 
form as in linear case)
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Additional penalty for 
violating ReLU constraint



Idea #3: Iterative lower and upper bounds

A meaningful bound requires good lower and upper bounds ℓ5, 𝑢5

Incrementally build bounds by solving LP for each activation

Need some tricks to make this efficient: use same (particular) 𝛼 for dual 
problems, compute multiplications in the right order in objective
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Putting it all together

In the end, instead of minimizing the traditional loss…

minimize
-

∑ ℓ(ℎ- 𝑥 5 , 𝑦 5 )
_

5=1

…we just minimize a loss with a different network, involving a few forward 
and backward passes, and we get a guaranteed bound on worst-case 
loss (or error) for any norm-bounded adversarial attack

minimize
-

∑ ℓ(𝐽3,- 𝑥 5 , 𝑦 5 )
_

5=1

At test time, evaluate the bound to see if example is possibly adversarial 
(zero false negatives, but may incorrectly flag some benign examples)

32



Outline

Adverarial attacks on machine learning

Robust optimization

Provable defenses for deep classifiers

Experimental results

33



2D Toy Example

Simple 2D toy problem, 2-100-100-100-2 MLP network, trained with 
Adam (learning rate = 0.001, no real hyperparameter tuning)
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Standard training Robust convex training



MNIST

Strided ConvNet (Conv16x4x4, Conv32x4x4, FC100, FC10) ReLUs
following each layer, convolutions have stride=2
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MNIST Attacks

We can also look at how well real attacks perform at 𝜖 = 0.1
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Convergence 
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Training does take substantially longer (2 hours), and requires more 
epochs than standard training

Method does largely avoid overfitting (adversarial robustness is a powerful 
regularizer), so we want to consider larger architectures



Results on additional tasks

Promising performance, but lots more work remains (right now, 
performance is limited by the size of architectures we can run), current 
work involves scaling to larger problems via random projections, 
bottleneck layers, and other techniques
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Some take away messages

The work on adversarial defenses, up until now, has been extremely ad-
hoc, defenses again some hypothesized attack, but not all attacks

Combining techniques from this class: convex optimization, linear 
programming, duality, with deep networks, is a largely unexplored and 
hugely fruitful area

Many open questions and practical challenges remain, but I think we are 
starting to be on the right course
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