
15-780 – Graduate Artificial Intelligence:
Machine learning

J. Zico Kolter (this lecture) and Ariel Procaccia
Carnegie Mellon University

Spring 2018

1

Outline

What is machine learning?

Linear regression

Linear classification

Nonlinear methods

Overfitting, generalization, and regularization

Evaluating machine learning algorithms

2

Outline

What is machine learning?

Linear regression

Linear classification

Nonlinear methods

Overfitting, generalization, and regularization

Evaluating machine learning algorithms

3

Introduction: digit classification

The task: write a program that, given a 28x28 grayscale image of a digit,
outputs the number in the image

Image: digits from the MNIST data set
(http://yann.lecun.com/exdb/mnist/)

4

Approaches

Approach 1: try to write a program by hand that
uses your a priori knowledge about what images
look like to determine what number they are

Approach 2: (the machine learning approach)
collect a large volume of images and their
corresponding numbers, let the “write its own
program” to map from these images to their
corresponding number

(More precisely, this is a subset of machine
learning called supervised learning)

5

8

5

Supervised learning pipeline

6

, 2

Training data

Hypothesis function

ℎ: 𝒳 → 𝒴 such that
𝑦 & ≈ ℎ 𝑥 & , ∀𝑖

, 0

, 5

, 8

𝑥 & ∈ 𝒳

𝑦 & ∈ 𝒴

Machine
learning

algorithm

(On new data 𝑥′ ∈ 𝒳,
make prediction

𝑦′ = ℎ(𝑥′))

Outline

What is machine learning?

Linear regression

Linear classification

Nonlinear methods

Overfitting, generalization, and regularization

Evaluating machine learning algorithms

7

A simple example: predicting electricity use

What will peak power consumption be in Pittsburgh tomorrow?

Difficult to build an “a priori” model from first principles to answer this
question

But, relatively easy to record past days of consumption, plus additional
features that affect consumption (i.e., weather)

8

Date High Temperature (F) Peak Demand (GW)
2011-06-01 84.0 2.651
2011-06-02 73.0 2.081
2011-06-03 75.2 1.844
2011-06-04 84.9 1.959
… … …

Plot of consumption vs. temperature

Plot of high temperature vs. peak demand for summer months (June –
August) for past six years

9

Hypothesis: linear model

Let’s suppose that the peak demand approximately fits a linear model

Peak_Demand ≈ 𝜃1 ⋅ High_Temperature + 𝜃2

Here 𝜃1 is the “slope” of the line, and 𝜃2 is the intercept

Now, given a forecast of tomorrow’s weather (ignoring for a moment that
this is also a prediction), we can predict how high the peak demand

10

Predictions

Predicting in this manner is equivalent to “drawing line through data”

11

55 60 65 70 75 80 85 90 95 100
High Temperature (F)

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

P
ea

k
D

em
an

d
(G

W
)

Observed days
Prediction

Machine learning notation

Input features: 𝑥 & ∈ ℝ2, 𝑖 = 1,… , 𝑚
E. g. : 𝑥 & = High_Temperature &

1

Outputs: 𝑦 & ∈ ℝ (regression task)
E. g. : 𝑦 & ∈ ℝ = Peak_Demand &

Model parameters: 𝜃 ∈ ℝ2

Hypothesis function: ℎ4: ℝ2 → ℝ, predicts output given input

E. g. : ℎ4 𝑥 = 𝜃5 𝑥 = ∑ 𝜃7

2

7=1
⋅ 𝑥7

12

Training
data

Loss functions

How do we measure how “good” a hypothesis function is, i.e. how close
is our approximation on our training data

𝑦 & ≈ ℎ4 𝑥 &

Typically done by introducing a loss function
ℓ: ℝ×ℝ → ℝ+

where ℓ ℎ4 𝑥 , 𝑦 denotes how far apart prediction is from actual output

E.g., for regression a common loss function is squared error:
ℓ ℎ4 𝑥 , 𝑦 = ℎ4 𝑥 − 𝑦 2

13

The canonical machine learning problem

With this notation, we define the canoncial machine learning problem:
given a set of input features and outputs 𝑥 & , 𝑦 & , 𝑖 = 1,… , 𝑚, find the
parameters that minimize the sum of losses

minimize
4

 ∑ ℓ ℎ4 𝑥 & , 𝑦 &
;

&=1

Virtually all machine learning algorithms have this form, we just need to
specify

1. What is the hypothesis function?
2. What is the loss function?
3. How do we solve the optimization problem?

14

Least squares

Let’s formulate our linear least squares problem in this notation

Hypothesis function: ℎ4 𝑥 = 𝜃5 𝑥

Squared loss function: ℓ ℎ4 𝑥 , 𝑦 = ℎ4 𝑥 − 𝑦 2

Leads to the machine learning optimization problem

minimize
4

 ∑ ℓ ℎ4 𝑥 & , 𝑦 &
;

&=1
≡ minimize

4
 ∑ 𝜃5 𝑥 & − 𝑦 & 2

;

&=1

A convex optimization problem in 𝜃, so we expect global solutions

But how do we solve this optimization problem?

15

Solution via gradient descent

Recall the gradient descent algorithm (written now to optimize 𝜃)
Repeat: 𝜃 → 𝜃 − 𝛼𝛻4𝑓 𝜃

What is the gradient of our objective function?

𝛻4 ∑ 𝜃5 𝑥 & − 𝑦 & 2
;

&=1
= ∑ 𝛻4 𝜃5 𝑥 & − 𝑦 & 2

;

&=1

 = 2∑ 𝑥 & (𝜃5 𝑥 & − 𝑦 &)
;

&=1

(using chain rule and the fact that 𝛻4𝜃5 𝑥 & = 𝑥 &), gives update:

Repeat: 𝜃 → 𝜃 − 𝛼 ∑ 𝑥 & (𝜃5 𝑥 & − 𝑦 &)
;

&=1

16

Linear algebra notation

Summation notation gets cumbersome, so convenient to introduce a
more compact notation:

𝑋 =

𝑥 1 5

𝑥 2 5

⋮
𝑥 ; 5

∈ ℝ;×2, 𝑦 =

𝑦 1

𝑦 2

⋮
𝑦 ;

∈ ℝ;

Least squares objective can now be written

∑ 𝜃5 𝑥 & − 𝑦 & 2
;

&=1
= 𝑋𝜃 − 𝑦 2

2

and gradient given by 𝛻4 𝑋𝜃 − 𝑦 2
2 = 2𝑋5 (𝑋𝜃 − 𝑦)

17

An alternative solution method

In order for 𝜃⋆ to minimize some (unconstrained, differentiable), function
𝑓 , necessary and sufficient that 𝛻4𝑓 𝜃⋆ = 0

Previously, we attained this point iteratively through gradient descent, but
for squared error loss, we can also find it analytically

 𝛻4 𝑋𝜃⋆ − 𝑦 2
2 = 0

⟹ 2𝑋5 𝑋𝜃⋆ − 𝑦 = 0
⟹ 𝑋5 𝑋𝜃⋆ = 𝑋5 𝑦
⟹ 𝜃⋆ = 𝑋5 𝑋 −1𝑋5 𝑦

These are called the normal equations, a closed form solution for
minimization of sum of squared losses

18

Least squares solution

Solving normal equations (or running gradient descent), gives coefficients
𝜃1 and 𝜃2 corresponding to the following fit

19

Poll: least squares when 𝑚 < 𝑛

What happens you run a least-squares solver, built using the simple
normal equations in Python, when 𝑚 < 𝑛?

1. Python will return an error, because the true minimum least-squares
cost is infinite

2. Python will return an error, even though the true minimum least-
squares cost is zero

3. Python will correctly compute the optimal solution, with strictly
positive cost

4. Python will correctly compute the optimal solution, with zero cost

20

Alternative loss functions

Why did we pick the squared loss ℓ ℎ4 𝑥 , 𝑦 = ℎ4 𝑥 − 𝑦 2?

Why not use an alternative like absolute loss ℓ ℎ4 𝑥 , 𝑦 = ℎ4 𝑥 − 𝑦 ?

We could write this optimization problem as

minimize
4

 ∑ ℓ ℎ4 𝑥 & , 𝑦 &
;

&=1
≡ minimize

4
 𝑋𝜃 − 𝑦 1

where 𝑧 1 = ∑ 𝑧&
�
& is called the ℓ1 norm

No closed-form solution, but (sub)gradient is given by
𝛻4 𝑋𝜃 − 𝑦 1 = 𝑋5 sign(𝑋𝜃 − 𝑦)

21

Poll: alternative loss solutions

Solutions for minimizing squared error and absolute error

22

Poll: which solution is
which?

1. Green is squared
loss, red is absolute

2. Red is squared loss,
green is absolute

3. Those lines look
identical to me

Outline

What is machine learning?

Linear regression

Linear classification

Nonlinear methods

Overfitting, generalization, and regularization

Evaluating machine learning algorithms

23

Classification tasks

Regression tasks: predicting real-valued quantity 𝑦 ∈ ℝ

Classification tasks: predicting discrete-valued quantity 𝑦

Binary classification: 𝑦 ∈ −1,+1

Multiclass classification: 𝑦 ∈ 1,2,… , 𝑘

24

Example: breast cancer classification

Well-known classification example: using machine learning to diagnose
whether a breast tumor is benign or malignant [Street et al., 1992]

Setting: doctor extracts a sample of fluid from tumor, stains cells, then
outlines several of the cells (image processing refines outline)

System computes features for each cell such as area, perimeter,
concavity, texture (10 total); computes mean/std/max for all features

25

Example: breast cancer classification

Plot of two features: mean area vs. mean concave points, for two classes

26

Linear classification example

Linear classification ≡ “drawing line separating classes”

27

Formal setting

Input features: 𝑥 & ∈ ℝ2, 𝑖 = 1,… , 𝑚

E. g. : 𝑥 & =
Mean_Area &

Mean_Concave_Points &

1

Outputs: 𝑦 & ∈ {−1,+1}, 𝑖 = 1,… , 𝑚
E. g. : 𝑦 & ∈ {−1 benign ,+1 (malignant)}

Model parameters: 𝜃 ∈ ℝ2

Hypothesis function: ℎ4: ℝ2 → ℝ, aims for same sign as the output
(informally, a measure of confidence in our prediction)

E. g. : ℎ4 𝑥 = 𝜃5 𝑥, 𝑦 ̂ = sign(ℎ4 𝑥)

28

Understanding linear classification diagrams

Color shows regions where the ℎ4(𝑥) is positive

Separating boundary is given by the equation ℎ4 𝑥 = 0

29

Loss functions for classification

How do we define a loss function ℓ: ℝ×{−1,+1} → ℝ+?

What about just using squared loss?

30

y

−1

+1

x0

y

−1

+1

x0
Least squares

y

−1

+1

x0
Least squares
Perfect classifier

0/1 loss (i.e. error)

The loss we would like to minimize (0/1 loss, or just “error”):

ℓ0/1 ℎ4 𝑥 , 𝑦 = {0 if sign ℎ4 𝑥 = 𝑦
1 otherwise

 = 𝟏{𝑦 ⋅ ℎ4 𝑥 ≤ 0}

31

Alternative losses

Unfortunately 0/1 loss is hard to optimize (NP-hard to find classifier with
minimum 0/1 loss, relates to a property called convexity of the function)

A number of alternative losses for classification are typically used instead

32

ℓ0/1 = 1 𝑦 ⋅ ℎ4 𝑥 ≤ 0
ℓlogistic = log 1 + exp −𝑦 ⋅ ℎ4 𝑥
ℓhinge = max{1 − 𝑦 ⋅ ℎ4 𝑥 , 0}
ℓexp = exp (−𝑦 ⋅ ℎ4 𝑥)

Machine learning optimization

With this notation, the “canonical” machine learning problem is written in
the exact same way

minimize
4

 ∑ ℓ ℎ4 𝑥 & , 𝑦 &
;

&=1

Again unlike least squares, typically no closed-formed solution, so we rely
on gradient descent

Repeat: 𝜃 ≔ 𝜃 − 𝛼 ∑ 𝛻4ℓ(
;

&=1
ℎ4 𝑥 & , 𝑦 &)

33

Support vector machine

A (linear) support vector machine (SVM) just solves the canonical machine
learning optimization problem using hinge loss and linear hypothesis

minimize
4

 ∑max {1 − 𝑦 & ⋅ 𝜃5 𝑥 & , 0}
;

&=1

The standard SVM actually includes another term called a regularization
term, but we’ll talk about this next lecture

Updates using gradient descent:

𝜃 ≔ 𝜃 − 𝛼 ∑ −𝑦 & 𝑥 & 1{
;

&=1
𝑦 & ⋅ 𝜃5 𝑥 & ≤ 1}

34

Support vector machine example

Running support vector machine on cancer dataset

35

𝜃 =
1.456
1.848

−0.189

SVM optimization progress

Optimization objective and error versus gradient descent iteration number

36

Logistic regression

Logistic regression just solves this problem using logistic loss and linear
hypothesis function

minimize
4

 ∑ log 1 + exp −𝑦 & ⋅ 𝜃5 𝑥 &
;

&=1

Gradient descent updates (can you derive these?):

𝜃 ≔ 𝜃 − 𝛼 ∑ −𝑦 & 𝑥 &
;

&=1

1
1 + exp 𝑦 & ⋅ 𝜃5 𝑥 &

37

Logistic regression example

Running logistic regression on cancer data set

38

Logistic regression example

Running logistic regression on cancer data set

39

Multiclass classification

When output is in {1,… ,𝑘} (e.g., digit classification), we can adopt a few
different approaches

Approach 1: Build 𝑘 different binary classifiers ℎ4Z
with the goal of predicting

class 𝑖 vs all others, output predictions as
𝑦 ̂ = argmax

&
ℎ4Z

(𝑥)

Approach 2: Use a hypothesis function ℎ4:ℝ2 → ℝ[, define an alternative
loss function ℓ:ℝ[× 1,… ,𝑘 → ℝ+

E.g., softmax loss (also called cross entropy loss):

ℓ ℎ4 𝑥 , 𝑦 = log ∑ exp ℎ4 𝑥 7

[

7=1
− ℎ4 𝑥 \

40

Outline

What is machine learning?

Linear regression

Linear classification

Nonlinear methods

Overfitting, generalization, and regularization

Evaluating machine learning algorithms

41

Peak demand vs. temperature (summer months)

42

Peak demand vs. temperature (all months)

43

Linear regression fit

44

“Non-linear” regression

Thus far, we have illustrated linear regression as “drawing a line through
through the data”, but this was really a function of our input features

Though it may seem limited, linear regression algorithms are quite
powerful when applied to non-linear features of the input data, e.g.

𝑥 & =
High_Temperature & 2

High_Temperature &

1

Same hypothesis class as before ℎ4 𝑥 = 𝜃5 𝑥, but now prediction will
be a non-linear function of base input (e.g. a quadratic function)

Same least-squares solution 𝜃 = 𝑋5 𝑋 −1𝑋5 𝑦

45

Polynomial features of degree 3

46

Polynomial features of degree 4

47

Polynomial features of degree 10

48

Polynomial features of degree 50

49

Linear regression with many features

Suppose we have 𝑚 examples in our data set and 𝑛 = 𝑚 features (plus
assumption that features are linearly independent, though we’ll always
assume this)

Then 𝑋 ∈ ℝ;×2 is a square matrix, and least squares solution is:
𝜃 = 𝑋5 𝑋 −1𝑋5 𝑌 = 𝑋−1𝑋−5 𝑋5 𝑦 = 𝑋−1𝑦

and we therefore have 𝑋𝜃 = 𝑦 (i.e., we fit data exactly)

Note that we can only perform the above operations when 𝑋 is square,
though if we have more features than examples, we can still get an exact
fit by simply discarding features

50

Outline

What is machine learning?

Linear regression

Linear classification

Nonlinear methods

Overfitting, generalization, and regularization

Evaluating machine learning algorithms

51

Generalization error

The problem we the canonical machine learning problem is that we don’t
really care about minimizing this objective on the given data set

minimize4 ∑ ℓ ℎ4 𝑥 & , 𝑦 &
;

&=1

What we really care about is how well our function will generalize to new
examples that we didn’t use to train the system (but which are drawn
from the “same distribution” as the examples we used for training)

The higher degree polynomials exhibited overfitting: they actually have
very low loss on the training data, but create functions we don’t expect to
generalize well

52

Cartoon version of overfitting

53

As model becomes more complex, training loss always decreases;
generalization loss decreases to a point, then starts to increase

Loss

Model Complexity

Training
Generalization

Cross-validation

Although it is difficult to quantify the true generalization error (i.e., the error
of these algorithms over the complete distribution of possible examples),
we can approximate it by holdout cross-validation

Basic idea is to split the data set into a training set and a holdout set

Train the algorithm on the training set and evaluate on the holdout set

54

Holdout / validation
set (e.g. 30%)Training set (e.g. 70%)

All data

Parameters and hyperparameters

We refer to the 𝜃 variables as the parameters of the machine learning
algorithm

But there are other quantities that also affect the classifier: degree of
polynomial, amount of regularization, etc; these are collectively referred to
as the hyperparameters of the algorithm

Basic idea of cross-validation: use training set to determine the
parameters, use holdout set to determine the hyperparameters

55

Illustrating cross-validation

56

Training and cross-validation loss by degree

57

Training and cross-validation loss by degree

58

Training and cross-validation loss by degree

59

K-fold cross-validation

A more involved (but actually slightly more common) version of cross
validation

Split data set into 𝑘 disjoint subsets (folds); train on 𝑘 − 1 and evaluate
on remaining fold; repeat 𝑘 times, holding out each fold once

Report average error over all held out folds

60

Fold 1

All data

Fold 2 Fold 𝑘…

Variants

Leave-one-out cross-validation: the limit of k-fold cross-validation,
where each fold is only a single example (so we are training on all other
examples, testing on that one example)

[Somewhat surprisingly, for least squares this can be computed more
efficiently than k-fold cross validation, same complexity solving for the
optimal 𝜃 using matrix equation]

Stratified cross-validation: keep an approximately equal percentage of
positive/negative examples (or any other feature), in each fold

Warning: k-fold cross validation is not always better (e.g., in time series
prediction, you would want to have holdout set all occur after training set)

61

Regularization

We have seen that the degree of the polynomial acts as a natural
measure of the “complexity” of the model, higher degree polynomials are
more complex (taken to the limit, we fit any finite data set exactly)

But fitting these models also requires extremely large coefficients on these
polynomials

For 50 degree polynomial, the first few coefficients are
𝜃 = −3.88×106, 7.60×106, 3.94×106, −2.60×107,…

This suggests an alternative way to control model complexity: keep the
weights small (regularization)

62

Regularized loss minimization

This leads us back to the regularized loss minimization problem we saw
before, but with a bit more context now:

minimize4 ∑ ℓ ℎ4 𝑥 & , 𝑦 &
;

&=1
+ 𝜆

2 𝜃 2
2

This formulation trades off loss on the training set with a penalty on high
values of the parameters

By varying 𝜆 from zero (no regularization) to infinity (infinite regularization,
meaning parameters will all be zero), we can sweep out different sets of
model complexity

63

Regularized least squares

For least squares, there is a simple solution to the regularized loss
minimization problem

minimize4 12 𝑋𝜃 − 𝑦 2
2 + 𝜆

2 𝜃 2
2

Taking gradients by the same rules as before gives:

𝛻4
1
2 𝑋𝜃 − 𝑦 2

2 + 𝜆
2 𝜃 2

2 = 𝑋5 𝑋𝜃 − 𝑦 + 𝜆𝜃

Setting gradient equal to zero leads to the solution
𝑋5 𝑋𝜃 + 𝜆𝜃 = 𝑋5 𝑦 ⟹ 𝜃 = 𝑋5 𝑋 + 𝜆𝐼 −1𝑋5 𝑦

Looks just like the normal equations but with an additional 𝜆𝐼 term

64

50 degree polynomial fit

65

50 degree polynomial fit – 𝜆 = 1

66

Training/cross-validation loss by regularization

67

Training/cross-validation loss by regularization

68

Poll: how do you fix this ML model?

Suppose you run a logistic regression
with linear features on some data set,
and plot the training/testing
performance versus # of samples,
which looks like the plot on the right.
Which of the following may help?

1. Increase regularization parameter
2. Decrease regularization

parameter
3. Add non-linear features
4. Remove features
5. Run a neural network

69

Loss

Number of samples

Training
Testing

Desired performance

Validation

Loss

Number of samples

Training
Testing

Desired performance

Poll: how do you fix this ML model?

Suppose you run a logistic regression
with linear features on some data set,
and plot the training/testing
performance versus # of samples,
which looks like the plot on the right.
Which of the following may help?

1. Add more data
2. Decrease regularization

parameter
3. Add non-linear features
4. Remove features
5. Run a support vector machine

70

Validation

Nonlinear classification

Just like linear regression, the nice thing about using nonlinear features for
classification is that our algorithms remain exactly the same as before

I.e., for an SVM, we just solve (using gradient descent)

minimize4 ∑max {1 − 𝑦 & ⋅ 𝜃5 𝑥 & , 0}
;

&=1
+ 𝜆

2 𝜃 2
2

Only difference is that 𝑥 & now contains non-linear functions of the input
data

71

Linear SVM on cancer data set

72

Polynomial features 𝑑 = 2

73

Polynomial features 𝑑 = 3

74

Polynomial features 𝑑 = 10

75

Outline

What is machine learning?

Linear regression

Linear classification

Nonlinear methods

Overfitting, generalization, and regularization

Evaluating machine learning algorithms

76

A common strategy for evaluating algorithms

1. Divide data set into training and holdout sets

2. Train different algorithms (or a single algorithm with different
hyperparameter settings) using the training set

3. Evaluate performance of all the algorithms on the holdout set, and
report the best performance (e.g., lowest holdout error)

What is wrong with this?

77

Issues with the previous evaluation

Even though we used a training/holdout split to fit the parameters, we are
still effectively fitting the hyperparameters to the holdout set

Imagine an algorithm that ignores the training set and makes random
predictions; given a large enough hyperparameter search (e.g., over
random seed), we could get perfect holdout performance

78

What to do instead

1. Divide data into training set, holdout set, and test set

2. Train algorithm on training set (i.e., to learn parameters), use holdout
set to select hyperparameters

3. (Optional) retrain system on training + holdout

4. Evaluate performance on test set

79

Test set
(e.g., 30%)

Training set
(e.g. 50%)

All data

Holdout / validation
set (e.g. 20%)

In practice…

“Leakage” of test set performance into algorithm design decisions in
almost always a reality when dealing with any fixed data set (in theory, as
soon as you look at test set performance once, you have corrupted that
data as a valid set set)

This is true in research as well as in data science practice

The best solutions: evaluate your system “in the wild” (where it will see
truly novel examples) as often a possible; recollect data if you suspect
overfitting to test set; look at test set performance sparingly

An interesting and very active area of research: adaptive data analysis
(differential privacy to theoretically guarantee no overfitting)

80

