
15780: GRADUATE AI (SPRING 2018)

Practice Final

May 2, 2018

Topic Total Score Score
Social Choice 14

Probabilistic Modeling 12
Game Theory 14

Convex Optimization 12
Deep Learning 16

Adversarial Attacks 16
Integer Programming 16

Total 100
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1 Social Choice: Strategyproofness [14 points]
Consider the library allocation problem discussed in class, where we pick the location to set up a library. For
this problem, we will consider the real plane (R2) as opposed to the real line (R). Recall that each player has
a true preference for the location of the library, which we will refer to as a peak.

Assume that the utility function of a player whose peak is x ∈ R2 is −d(x, y) for a facility located at y,
where d denotes Euclidean distance. Given player peaks x1, ..., xn, consider the mechanism that locates the
library at (med{xi1},med{xi2}). Prove that this mechanism is strategyproof, i.e., player i cannot increase
their utility by reporting a peak that is different from xi, regardless of the reports of other players.

Note: For simplicity, you can assume that the number of voters n is odd.
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2 Probabilistic Modeling: MLE and MAP [12 points]
(a) [4 points] Given a collection of observed (independent) data points X = {x(1), . . . , x(m)} from a

uniform distribution over [−2α, α] (for α > 0), derive the maximum likelihood estimator of α, which
maximizes the probability of observing X .

(b) [8 points] Given a collection of observed (independent) data points X = {x(1), ...x(m)} from a uni-
form distribution over [0, eα] where α follows a prior distribution

p(α) ∝ e−α
2

,

derive the estimator of α that maximizes the posteriori probability p(α|X). (Hint: use p(α|X) ∝
p(X|α)p(α)).
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3 Game Theory: IESDS [14 points]
One method of simplifying the search for Nash equilibria is through the iterated elimination of strictly
dominated strategies (IESDS). We say that a player’s pure strategy s′i is strictly dominated by another pure
si if ∀s−i ∈ S−i, ui(s′i, s−i) < ui(si, s−i). In other words, s1 dominates s2 if, no matter what the other
players do, player i always does strictly better by playing s1 rather than s2.

IESDS proceeds by repeatedly eliminating one strictly dominated strategy per round, until there are no
more dominated strategies to eliminate. For example, IESDS on the following game proceeds as follows.

North East South West
Top 2,3 1,-1 4,0 3,-3
Middle 7,2 -2,0 5,2 6,7
Bottom 8,2 0,1 6,-1 4,0

• Column eliminates East, as playing North is strictly better.

• Row eliminates Top, as playing either Middle or Bottom is strictly better now that Column has elimi-
nated East.

• Column eliminates South, as playing West is strictly better now.

• No more strategies can be eliminated; this leaves Row: [Middle, Bottom] and Column: [North, West]
as the surviving strategies.

Prove the following: If IESDS eliminates all but one of the strategies of each player, then there is a unique
Nash equilibrium in the game.

Hints:

• Start by proving that IESDS will never remove an action si that appears (with nonzero probability) in
any Nash equilibrium.

• Conclude by applying Nash’s Theorem: In any (finite) game, there exists at least one (possibly mixed)
Nash equilibrium.
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4 Convex Optimization [12 points]
Recall that we covered two distinct but similar notions of convexity in class: convexity of sets, and convexity
of functions. These two definitions are not directly comparable, but we can establish a relationship between
them as follows.

(a) [6 points] The level set Iβ of a function is the subset of all points in its domain for which the function
takes a value at most β i.e., for f : D → R with some domain D, Iβ = {x ∈ D | f(x) ≤ β}. Prove
that when f is a convex function, for every β, the level set Iβ is convex.

(b) [6 points] Find an example where the converse is not true, i.e. a non-convex function for which for
every β the level set Iβ (as defined above) is convex. (A pictoral proof with a brief justification is
fine.)
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5 Deep Learning: Neural Networks and Boolean Functions [16 points]
In this question, you will explore the representational power of neural networks. We will assume the inputs
x ∈ {0, 1}n are binary vectors of length n. We will also use the true binary threshold as the activation
function, i.e., f(z) = 1 if z > 0 and 0 otherwise. We will consider only networks with a 1-unit output layer,
and thus the output will be either 0 or 1. We can think of using such a neural network to implement boolean
functions.

(a) [8 points] Suppose n = 2 i.e. the input is a pair of binary values. Suppose we have a neural network
with no hidden units and just a single output unit, i.e. y = f(WTx+ b) is the entire network. What
should W and b be if we want to implement boolean AND (i.e. y = 1 only when x = (1, 1)). What
about boolean OR? (No justification is needed.)

(b) [8 points] In fact, for any number of input boolean variables, a single hidden layer is enough to
represent any boolean function. We can use a scheme known as conjunctive normal form (CNF) to do
this. A formula is in CNF if it is being expressed as an OR over multiple ANDs. The ANDs are defined
on the input variables, and are known as clauses. For instance, (x1 ∧ x2 ∧ ¬x3) ∨ (¬x1 ∧ x2 ∧ x3) is
a valid CNF on the input variables x1, x2, x3.

Any boolean function can be represented by a CNF formula. Describe how to build a network to
implement any boolean function in this way.
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6 Adversarial Attacks [16 points]
Assume we are given a set of m training points S = {(x(i), y(i)) ∈ RD × {−1,+1} | i = 1, . . .m}.
Consider a monotonically decreasing classification loss L : R→ R and a hypothesis function hθ(x) = θTx
mapping from RD to R for θ ∈ RD.

For this problem, assume that the training data is such that for every i, the first co-ordinate of x(i) equals
its label and all other co-ordinates are zero i.e., x(i)1 = y(i), and x(i)j = 0 for j > 1. Consider values θa and
θb of the parameter, that perfectly classify the training data:

θa = (1,

D−1 zeros︷ ︸︸ ︷
0, 0, . . . , 0)

θb = (1, 1, 1, . . . , 1).

We can see that for all i, hθa(x(i)) · y(i) = hθb(x(i)) · y(i) = 1, leading to perfect classification.

(a) [8 points] Robustness of θa to adversarial attacks. Consider ε such that for every sample i, there
exists an adversarial perturbation ∆(i) satisfying ‖∆(i)‖∞ ≤ ε and hθa(x(i) + ∆(i)) · y(i) ≤ 0? Show
that the smallest value ε can take is 1.
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(b) [8 points] Robustness of θb to adversarial attacks. Consider ε such that for every sample i, there
exists an adversarial perturbation ∆(i) satisfying ‖∆(i)‖∞ ≤ ε and hθb(x + ∆(i)) · y(i) ≤ 0. Show
that the smallest value ε can take is 1/D.
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7 Integer Programming [16 points]
Consider a linear binary classification setting (i.e. hθ(x) = θTx, y ∈ {−1, 1}) where we would like to
minimize a modification of the standard 0/1 loss (i.e. number of mistakes):

minimize
θ∈Rn

1

m

m∑
i=1

`(θTx(i), y(i)) (1)

where
`(θTx, y) = 1{y · (θTx) < 1}.

This machine learning problem can be formulated as a mixed integer program. Construct a mixed integer
program that is equivalent to Equation (1), and briefly justify why they are equivalent.
Hints:

• Introduce an additional optimization variable z ∈ {0, 1}m.

• Construct a constraint enforcing that for a given θ, zi is allowed to be 0 only if we have correctly
classified example x(i) under θ. Equivalently, your constraint must ensure that when x(i) has been
misclassified for a particular θ, then the only feasible value of zi is 1.

• To implement the previous hint, introduce an arbitrarily large constant M and note that ziM = 0 iff
zi = 0. (You do not need to be precise about the definition of M , but you will need to justify why it
must be “large enough.”)
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