
15-780 – Graduate Artificial Intelligence:
Optimization

J. Zico Kolter (this lecture) and Ariel Procaccia
Carnegie Mellon University

Spring 2017

1

Outline

Introduction to optimization

Types of optimization problems, convexity

Solving optimization problems

2

Logistics

HW0, some unintentional ambiguity about “no late days” criteria

To be clear, in all future assignments, the policy is:
You have 5 late days, no more than 2 on any assignment
If you use up your five late days, you will receive 20% off per day for
these two days
If you submit any homework more than 2 days late, you will receive
zero credit

All homework, both programming and written portions, must be written
up independently

All students who submitted HW0 have been taken off waitlist

3

Outline

Introduction to optimization

Types of optimization problems, convexity

Solving optimization problems

4

Continuous optimization

The problems we have seen so far (i.e., search) in class involve making
decisions over a discrete space of choices

An amazing property:

One of the most significant trends in AI in the past 15 years has been the
integration of optimization methods throughout the field

5

Discrete search (Convex) optimization
Variables Discrete Continuous
Solutions Finite Infinite
Solution complexity Exponential Polynomial

Optimization definitions

We’ll write optimization problems like this:
 minimize

!
 𝑓(𝑥)

subject to 𝑥 ∈ 𝒞
which should be interpreted to mean: we want to find the value of 𝑥 that
achieves the smallest possible value of 𝑓(𝑥), out of all points in 𝒞

Important terms:
𝑥 ∈ ℝ' – optimization variable (vector with 𝑛 real-valued entries)
𝑓 : ℝ' → ℝ – optimization objective
𝒞 ⊆ ℝ' – constraint set
𝑥⋆ ≡ argmin

!∈-
𝑓(𝑥) – optimal solution

𝑓⋆ ≡ 𝑓 𝑥⋆ ≡ min
!∈-

𝑓(𝑥) – optimal objective

6

Example: Weber point

Given a collection of cities (assume
on 2D plane) how can we find the
location that minimizes the sum of
distances to all cities?

Denote the locations of the cities as
𝑦 1 ,… , 𝑦 0

Write as the optimization problem:

minimize
!

∑ 𝑥 − 𝑦 0
2

0

4=1

7

?

Example: image deblurring

Given corrupted image 𝑌 ∈ ℝ0×', reconstruct image by solving
optimization problem:

minimize
7

 ∑ 𝑌48 − 𝐾 ∗ 𝑋 48

�

4,8
+ 𝜆 ∑ 𝑋48 − 𝑋4,8+1

2 + 𝑋4+1,8 − 𝑋48
2

1
2

�

4,8

where 𝐾 ∗ denotes convolution with a blurring filter
8

Figure from (O’Connor and Vandenberghe, 2014)

1742 DANIEL O’CONNOR AND LIEVEN VANDENBERGHE

0 200 400 600 800 1000
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

iteration number k

(f (xk)− f ⋆)/f ⋆

CP
ADMM
primal DR
primal−dual DR

Figure 2. Relative optimality gap versus iteration number for the experiment in section 5.1.

(a) Original image. (b) Blurry, noisy image. (c) Restored image.

Figure 3. Result for the experiment in section 5.1.

by the discrete Fourier basis matrix. The average elapsed time per iteration was 1.37 seconds
for Chambolle–Pock, 1.33 seconds for ADMM, 1.33 seconds for primal Douglas–Rachford, and
1.46 seconds for primal-dual Douglas–Rachford.

As can be seen from the convergence plots, the four methods reach a modest accuracy
quickly. After a few hundred iterations, progress slows down considerably. In this example the
algorithms based on Douglas–Rachford converge faster than the Chambolle–Pock algorithm.
The time per iteration is roughly the same for each method and is dominated by 2D fast
Fourier transforms.

The quality of the restored image is good because the L1 data fidelity is very well suited
to deal with salt and pepper noise. Using an L2 data fidelity term and omitting the interval
constraints leads to a much poorer result. To illustrate this, Figure 5 shows the result of

Example: robot trajectory planning

Many robotic planning tasks are more
complex than shortest path, e.g. have
robot dynamics, require “smooth” controls

Common to formulate planning problem as
an optimization task

Robot state 𝑥> and control inputs 𝑢>

minimize
!1:B ,C1:B−1

 ∑ 𝑢> 2
2

D

4=1
subject to 𝑥>+1 = 𝑓dynamics 𝑥>, 𝑢>
 𝑥> ∈ FreeSpace, ∀𝑡
 𝑥1 = 𝑥init, 𝑥D = 𝑥goal

9

estimates. It is correct to first order in non-degenerate 2D
cases, but it is not guaranteed to be accurate in 3D. Let
p

swept

, p

B

, denote the closest points and normals between
convhull(A(t), A(t+1)) and B, respectively, and let ˆ

n be the
normal pointing from B into A.

1) Find supporting vertices p

0

2 A(t) and p

1

2 A(t + 1)

by taking the support map of these sets in the normal
direction �ˆ

n.
2) Our approximation assumes that the contact point p

swept

is a fixed convex combination of p

0

and p

1

. In some
cases, p

0

, p
swept

, and p

1

are collinear. To handle the
other cases, we set

↵ =

kp
1

� p

swept

k
kp

1

� p

swept

k + kp
0

� p

swept

k (20)

We make the approximation

p

swept

(✓) ⇡ ↵p
0

+ (1 � ↵)p

1

(21)

3) Calculate the Jacobians of those points

J
p0(✓

t

0

) =

d

d✓t

p

0

, J
p1(✓

t+1

0

) =

d

d✓t+1

p

1

(22)

4) Similarly to Equation 16, linearize the signed distance
around the trajectory variables at timesteps t and t + 1

sd

AB

(✓t,✓t+1

) ⇡ sd

AB

(✓t

0

,✓t+1

0

)

+↵n̂T J
p0(✓

t

0

)(✓t � ✓t

0

)

+(1 � ↵)n̂

T J
p1(✓

t+1

0

)(✓t+1 � ✓t+1

0

)

(23)

The preceding discussion assumed that the shapes undergo
translation only. However, the robot’s links also undergo
rotation, so the convex hull will underestimate the swept-out
volume. This phenomenon is illustrated in Figure 5. We can
calculate a simple upper-bound to the swept-out volume, based
on the amount of rotation. Consider a shape A undergoing
translation T and rotation angle � around axis ˆk in local
coordinates. Let A(t) and A(t + 1) be the occupied space
at the initial and final times, respectively. One can show that
if we expand the convex hull convhull(A(t), A(t + 1)) by
d

arc

= r�2/8, where r is the maximum distance from a point
on A to the local rotation axis, then the swept-out volume is
contained inside.

In summary, we can ensure continuous time safety by
ensuring that for each time interval [t, t + 1]

sd(convhull(A(t),A(t + 1)),O) > dsafe + darc (24)

One could relax this constraint into a penalty as described
in Section IV, by approximating �(✓t,✓t+1

). In practice, we
ignored the correction darc, since it was well under 1 cm in all
of the problems we considered.

The method described in this section for continuous-time
collision detection only has a modest performance penalty
versus the discrete-time collision detection, where the slow-
down is because we have to calculate the support mapping
of a convex shape with twice as many vertices. As a result,
the narrow-phase collision detection takes about twice as
long. The upshot is that the continuous collision cost solves

𝑑

𝑟

Fig. 5. Illustration of the difference between swept out shape and convex
hull. The figure shows a triangle undergoing translation and uniform rotation.
The swept-out area is enclosed by dotted lines, and the convex hull is shown
by a thick gray line.

problems with thin obstacles where the discrete-time cost fails
to get the trajectory out of collision. An added benefit is that
we can ensure continuous-time safety while parametrizing the
trajectory with a small number of waypoints, reducing the
computational cost of the optimization.

VI. MOTION PLANNING BENCHMARK

Fig. 6. Scenes in our benchmark tests. Left and center: two of the scenes
used for the arm planning benchmark. Right: a third scene, showing the path
found by our planner on an 18-DOF full-body planning problem.

We compared our algorithm to several other motion plan-
ning algorithms on a collection of problems in simulated
environments. Our evaluation is based on four test scenes
included with the MoveIt! distribution that is part of the ROS
motion planning libraries [5?]. We used the bookshelves,
countertop, industrial, and tunnel scenes for the evaluation
because they were the most complex. The set of planning
problems was created as follows. For each scene we set up
the robot in a number of diverse configurations. Each pair of
configurations yields a planning problem. We assume that the
end configuration is fixed, as opposed to some other constraint
like the gripper pose.

Our tests include 198 arm planning problems and 96 full-
body problems. We compared to the top-performing plan-
ning algorithms from OMPL / MoveIt. They include a bi-
directional RRT [13] and a variant of KPIECE [24]. All of
these algorithms were run using default parameters and post-
processed by the default smoother used by MoveIt. We also
compared to the latest implementation of CHOMP on the arm
planning problems. This version is not yet publicly available
at the time of publication, but it was made available to us
by the authors [28]. We did not use CHOMP for the full-body

Figure from (Schulman et al., 2014)

Example: machine learning

As we will see in much more detail shortly, virtually all (supervised)
machine learning algorithms boil down to solving an optimization problem

minimize
S

∑ ℓ ℎS 𝑥 4 , 𝑦 4
0

4=1

Where 𝑥 4 ∈ 𝒳 are inputs, 𝑦 4 ∈ 𝒴 are outputs, ℓ is a loss function, ad
ℎS is a hypothesis function parameterized by 𝜃, which are the parameters
of the model we are optimizing over

Much more on this soon

10

The benefit of optimization

One of the key benefits of looking at problems in AI as optimization
problems: we separate out the definition of the problem from the method
for solving it

For many classes of problems, there are off-the-shelf solvers that will let
you solve even large, complex problems, once you have put them in the
right form

11

Outline

Introduction to optimization

Types of optimization problems, convexity

Solving optimization problems

12

Classes of optimization problems

Many different names for types of optimization problems: linear
programming, quadratic programming, nonlinear programming,
semidefinite programming, integer programming, geometric
programming, mixed linear binary integer programming (the list goes on
and on, can all get a bit confusing)

We’re instead going to focus on two dimensions: convex vs. nonconvex
and constrained vs. unconstrained

13

Constrained

Unconstrained
Convex Nonconvex

Most machine
learning

Linear
programming

Deep learning

Integer
programming

Constrained vs. unconstrained

In unconstrained optimization, every point 𝑥 ∈ ℝ' is feasible, so singular
focus is on minimizing 𝑓(𝑥)

In contrast, for constrained optimization, it may be difficult to even find a
point 𝑥 ∈ 𝒞

Often leads to very different methods for optimization (more next lecture)
14

 minimize
!

 𝑓(𝑥)
subject to 𝑥 ∈ 𝒞

 minimize
!

 𝑓(𝑥)

x1

x2

x⋆

C

x1

x2

x⋆

Convex vs. nonconvex optimization

Originally, researchers distinguished between linear (easy) and nonlinear
(hard) problems

But in 80s and 90s, it became clear that this wasn’t the right distinction,
key difference is between convex and nonconvex problems

Convex problem:
 minimize

!
 𝑓(𝑥)

subject to 𝑥 ∈ 𝒞
Where 𝑓 is a convex function and 𝒞 is a convex set

15

Convex
function Nonconvex
function

f1(x) f2(x)

Convex sets

A set 𝒞 is convex if, for any 𝑥, 𝑦 ∈ 𝒞 and 0 ≤ 𝜃 ≤ 1
𝜃𝑥 + 1 − 𝜃 𝑦 ∈ 𝒞

Examples:
All points 𝒞 = ℝ'

Intervals 𝒞 = {𝑥 ∈ ℝ'| 𝑙 ≤ 𝑥 ≤ 𝑢} (elementwise inequality)
Linear equalities 𝒞 = 𝑥 ∈ ℝ' 𝐴𝑥 = 𝑏} (for 𝐴 ∈ ℝ0×', 𝑏 ∈ ℝ0)
Intersection of convex sets 𝒞 = ⋂ 𝒞4

0
4=1

16

..

Convex
set

.

Nonconvex
set

Convex functions

A function 𝑓 : ℝ' → ℝ is convex if, for any 𝑥, 𝑦 ∈ ℝ' and 0 ≤ 𝜃 ≤ 1
𝑓 𝜃𝑥 + 1 − 𝜃 𝑦 ≤ 𝜃𝑓 𝑥 + 1 − 𝜃 𝑓 𝑦

Convex functions “curve upwards” (or at least not downwards)

If 𝑓 is convex then −𝑓 is concave

If 𝑓 is both convex and concave, it is affine, must be of form:

𝑓 𝑥 = ∑ 𝑎4𝑥4

'

4=1
+ 𝑏

17

(x, f (x))
(y, f (y))

Examples of convex functions

Exponential: 𝑓 𝑥 = exp 𝑎𝑥 , 𝑎 ∈ ℝ

Negative logarithm: 𝑓 𝑥 = − log 𝑥, with domain 𝑥 > 0

Squared Euclidean norm: 𝑓 𝑥 = 𝑥 2
2 ≡ 𝑥D 𝑥 ≡ ∑ 𝑥4

2'
4=1

Euclidean norm: 𝑓 𝑥 = 𝑥 2

Non-negative weighted sum of convex functions

𝑓 𝑥 = ∑ 𝑤4𝑓4(𝑥)
0

4=1
, 𝑤4 ≥ 0, 𝑓4 convex

18

Poll: convex sets and functions

Which of the following functions or sets are convex

1. A union of two convex sets 𝒞 = 𝒞1 ∪ 𝒞2

2. The set 𝑥 ∈ ℝ2 𝑥 ≥ 0, 𝑥1𝑥2 ≥ 1}

3. The function 𝑓 : ℝ2 → ℝ, 𝑓 𝑥 = 𝑥1𝑥2

4. The function𝑓 : ℝ2 → ℝ, 𝑓 𝑥 = 𝑥1
2 + 𝑥2

2 + 𝑥1𝑥2

19

Convex optimization

The key aspect of convex optimization problems that make them
tractable is that all local optima are global optima

Definition: a point 𝑥 is globally optimal if 𝑥 is feasible and there is no
feasible 𝑦 such that 𝑓 𝑦 < 𝑓 𝑥

Definition: a point x is locally optimal if 𝑥 is feasible and there is some
𝑅 > 0 such that for all feasible 𝑦 with 𝑥 − 𝑦 2 ≤ 𝑅, 𝑓 𝑥 ≤ 𝑓 𝑦

Theorem: for a convex optimization problem all locally optimal points are
globally optimal

20

Proof of global optimality

Proof: Given a locally optimal 𝑥 (with optimality radius 𝑅), and suppose there
exists some feasible 𝑦 such that 𝑓 𝑦 < 𝑓 𝑥

Now consider the point

𝑧 = 𝜃𝑥 + 1 − 𝜃 𝑦, 𝜃 = 1 − 𝑅
2 𝑥 − 𝑦 2

1) Since 𝑥, 𝑦 ∈ 𝒞 (feasible set), we also have 𝑧 ∈ 𝒞 (by convexity of 𝒞)

2) Furthermore, since 𝑓 is convex:
𝑓 𝑧 = 𝑓 𝜃𝑥 + 1 − 𝜃 𝑦 ≤ 𝜃𝑓 𝑥 + 1 − 𝜃 𝑓 𝑦 < 𝑓 𝑥 and
𝑥 − 𝑧 2 = 𝑥 − 1 − e

2 !−f 2
𝑥 + e

2 !−f 2
𝑦

2
= e !−f

2 !−f 2 2
= e

2

Thus, 𝑧 is feasible, within radius 𝑅 of 𝑥, and has lower objective value, a
contradiction of supposed local optimality of 𝑥

21
∎

Outline

Introduction to optimization

Types of optimization problems, convexity

Solving optimization problems

22

The gradient

A key concept in solving optimization problems is the notation of the
gradient of a function (multi-variate analogue of derivative)

For 𝑓 : ℝ' → ℝ, gradient is defined as vector of partial derivatives

Points in “steepest direction” of increase in function 𝑓
23

x1

x2

∇xf (x)

∇!𝑓 𝑥 ∈ ℝ' =

𝜕𝑓 𝑥
𝜕𝑥1

𝜕𝑓 𝑥
𝜕𝑥2

⋮
𝜕𝑓 𝑥
𝜕𝑥'

Gradient descent

Gradient motivates a simple algorithm for minimizing 𝑓(𝑥): take small
steps in the direction of the negative gradient

“Convergence” can be defined in a number of ways

24

Algorithm: Gradient Descent
Given:

Function 𝑓 , initial point 𝑥0, step size 𝛼 > 0
Initialize:

𝑥 ← 𝑥0
Repeat until convergence:

𝑥 ← 𝑥 − 𝛼𝛻!𝑓(𝑥)

Gradient descent works

Theorem: For differentiable 𝑓 and small enough 𝛼, at any point 𝑥 that is
not a (local) minimum

𝑓 𝑥 − 𝛼∇!𝑓 𝑥 < 𝑓(𝑥)

i.e., gradient descent algorithm will decrease the objective

Proof: Any differentiable function 𝑓 can be written in terms of its Taylor
expansion: 𝑓 𝑥 + 𝑣 = 𝑓 𝑥 + ∇!𝑓 𝑥 D 𝑣 + 𝑂(𝑣 2

2)

25

f (x + v)
x

f (x) +∇xf (x)Tv

x + v

Gradient descent works (cont)

Choosing 𝑣 = −𝛼∇!𝑓 𝑥 , we have
𝑓 𝑥 − 𝛼∇!𝑓 𝑥 = 𝑓 𝑥 − 𝛼∇!𝑓 𝑥 D ∇!𝑓 𝑥 + 𝑂 𝛼∇!𝑓 𝑥 2

2

 ≤ 𝑓 𝑥 − 𝛼 ∇!𝑓 𝑥 2
2 + 𝐶 𝛼∇!𝑓 𝑥 2

2

 = 𝑓 𝑥 − 𝛼 − 𝛼2𝐶 ∇!𝑓 𝑥 2
2

 < 𝑓 𝑥 (for 𝛼 < 1/𝐶 and ∇!𝑓 𝑥 2
2 > 0)

We are guaranteed to have ∇!𝑓 𝑥 2
2> 0 except at optima

Works for both convex and non-convex functions, but with convex
functions guaranteed to find global optimum

26

∎

(Watch out: a bit of subtlety of this line, only holds for small 𝛼∇!𝑓 𝑥)

Poll: modified gradient descent

Consider an alternative version of gradient descent, where instead of
choosing an update 𝑥 − 𝛼∇!𝑓(𝑥), we chose some other direction
𝑥 + 𝛼𝑣 where 𝑣 has a negative inner product with the gradient

∇!𝑓 𝑥 D 𝑣 < 0

Will this update, for suitably chosen 𝛼, still decrease the objective?

1. No, not necessarily (for either convex or nonconvex functions)

2. Only for convex functions

3. Only for nonconvex functions

4. Yes, for both convex and nonconvex functions

27

Gradient descent in practice

Choice of 𝛼 matters a lot in practice:
minimize

!
 2𝑥1

2 + 𝑥2
2 + 𝑥1𝑥2 − 6𝑥1 − 5𝑥2

28

𝛼 = 0.2 𝛼 = 0.42𝛼 = 0.05

Dealing with constraints, non-differentiability

For settings where we can easily project points onto the constraint set 𝒞,
can use a simple generalization called projected gradient descent

Repeat: 𝑥 ← 𝑃- 𝑥 − 𝛼∇!𝑓 𝑥

If 𝑓 is not differentiable, but continuous, it still has what is called a
subgradient, can replace gradient with subgradient in all cases (but
theory/practice of convergence is quite different)

29

Optimization in practice

We won’t discuss this too much yet, but one of the beautiful properties of
optimization problems is that there exists a wealth of tools that can solve
them using very simple notation

Example: solving Weber point problem using cvxpy (http://cvxpy.org)

30

import numpy as np
import cvxpy as cp

n,m = (5,10)
y = np.random.randn(n,m)
x = cp.Variable(n)
f = sum(cp.norm2(x - y[:,i]) for i in range(m))
cp.Problem(cp.Minimize(f), []).solve()

