
15-780 – Graduate Artificial Intelligence:
Linear programming

J. Zico Kolter (this lecture) and Ariel Procaccia
Carnegie Mellon University

Spring 2017

1

Outline

Introduction

Linear programming

Simplex algorithm

2

Outline

Introduction

Linear programming

Simplex algorithm

3

Example: manufacturing

A large factory makes tables and chairs. Each table returns a profit of
$200 and each chair a profit of $100. Each table takes 1 unit of metal and
3 units of wood and each chair takes 2 units of metal and 1 unit of wood.
The factory has 6K units of metal and 9K units of wood. How many tables
and chairs should the factory make to maximize profit?

4

Example: manufacturing

A large factory makes tables and chairs. Each table returns a profit of
$200 and each chair a profit of $100. Each table takes 1 unit of metal and
3 units of wood and each chair takes 2 units of metal and 1 unit of wood.
The factory has 6K units of metal and 9K units of wood. How many tables
and chairs should the factory make to maximize profit?

5

x1 (tables)

x2 (chairs)

Example: manufacturing

A large factory makes tables and chairs. Each table returns a profit of
$200 and each chair a profit of $100. Each table takes 1 unit of metal and
3 units of wood and each chair takes 2 units of metal and 1 unit of wood.
The factory has 6K units of metal and 9K units of wood. How many tables
and chairs should the factory make to maximize profit?

6

x1 (tables)

x2 (chairs)

x1 + 2x2 ≤ 6 (metal)

Example: manufacturing

A large factory makes tables and chairs. Each table returns a profit of
$200 and each chair a profit of $100. Each table takes 1 unit of metal and
3 units of wood and each chair takes 2 units of metal and 1 unit of wood.
The factory has 6K units of metal and 9K units of wood. How many tables
and chairs should the factory make to maximize profit?

7

x1 (tables)

x2 (chairs)

x1 + 2x2 ≤ 6 (metal)

3x1 + x2 ≤ 9 (wood)

Example: manufacturing

A large factory makes tables and chairs. Each table returns a profit of
$200 and each chair a profit of $100. Each table takes 1 unit of metal and
3 units of wood and each chair takes 2 units of metal and 1 unit of wood.
The factory has 6K units of metal and 9K units of wood. How many tables
and chairs should the factory make to maximize profit?

8

x1 (tables)

x2 (chairs)

x1 + 2x2 ≤ 6 (metal)

3x1 + x2 ≤ 9 (wood)

Profit = 2x1 + x2

Example: manufacturing

A large factory makes tables and chairs. Each table returns a profit of
$200 and each chair a profit of $100. Each table takes 1 unit of metal and
3 units of wood and each chair takes 2 units of metal and 1 unit of wood.
The factory has 6K units of metal and 9K units of wood. How many tables
and chairs should the factory make to maximize profit?

9

x1 (tables)

x2 (chairs)

x1 + 2x2 ≤ 6 (metal)

3x1 + x2 ≤ 9 (wood)

Profit = 2x1 + x2
x⋆1 = 2.4, x⋆2 = 1.8

Many applications

Finding optimal strategy in zero-sum two player games

Finding most probable assignment in probabilistic models

Finding solution in Markov decision processes

Min-cut / max-flow network problems

Applications: economic portfolio optimization, robotic control, scheduling
generation in smart grids, many many others

10

Example manufacturing

We can write our manufacturing problem formally as:

11

x1 (tables)

x2 (chairs)

x1 + 2x2 ≤ 6 (metal)

3x1 + x2 ≤ 9 (wood)

Profit = 2x1 + x2

 maximize
!1,!2

 2𝑥1 + 𝑥2

subject to 3𝑥1 + 𝑥2 ≤ 9
 𝑥1 + 2𝑥2 ≤ 6
 𝑥1,𝑥2 ≥ 0

Outline

Introduction

Linear programming

Simplex algorithm

12

Inequality form linear programs

Using linear algebra notation, we can write problems compactly as
 maximize

!
 𝑐+ 𝑥

subject to 𝐺𝑥 ≤ ℎ
with optimization variable 𝑥 ∈ ℝ0, problem data 𝑐 ∈ ℝ0, 𝐺 ∈ ℝ1×0,
ℎ ∈ ℝ1 and where ≤ denotes elementwise inequality

A convex optimization problem (objective is affine, constraints are convex)

Our example:

13

 maximize
!1,!2

 2𝑥1 + 𝑥2

subject to 3𝑥1 + 𝑥2 ≤ 9
 𝑥1 + 2𝑥2 ≤ 6
 𝑥1,𝑥2 ≥ 0

𝑐 = 2
1 ,𝐺 =

3 1
1 2

−1 0
0 −1

,ℎ =
 9
6
0
0

⟺

Geometry of linear programs

Consider a single row of the constraint matrix
𝑔6

+ 𝑥 ≤ ℎ6

This represents a halfspace constraint

14

x1

x2

gi
hi

∥gi∥2

Linear polytope

Multiple halfspace constraints 𝐺𝑥 ≤ ℎ (i.e., 𝑔6
+ 𝑥 ≤ ℎ6, 𝑖 = 1,… , 𝑚)

define what is called a polytope

So linear programming in equivalent to maximizing some direction over
this polytope (note that optimum will always occur on a corner)

15

x1

x2

g1

g2
g3

g4

g5 g6

Poll: Number of corners in a polytope

Consider a polytope in 𝑛 dimensional space, defined by 𝑂(𝑛) linear
inequalities. How many corners (vertices) of the polytope can there be?

1. 𝑂 𝑛

2. 𝑂(𝑛2)

3. 𝑂(20)

4. 𝑂(𝑛0)

16

Poll: Number of inequalities in a polytope

Consider a polytope in 𝑛 dimensional space, with 𝑂 𝑛 corners
(vertices). How many linear inequalities could we need to define the
polytope?

1. 𝑂 𝑛

2. 𝑂(𝑛2)

3. 𝑂(20)

4. 𝑂(𝑛0)

17

Infeasible or unbounded polytopes

Polytopes may be infeasible or unbounded, correspond to have no
solution or potentially an unbounded solution for linear program

18

x1

x2

g1
g2

g3

x1

x2 g1

g2

g3 g4

c

Stanford form linear programs

For the simplex algorithm, we will consider linear programs in an
alternative form, known as standard form:

minimize
!

 𝑐+ 𝑥
subject to 𝐴𝑥 = 𝑏
 𝑥 ≥ 0

with optimization variable 𝑥 ∈ ℝ0, and problem data 𝑐 ∈ ℝ0, 𝐴 ∈
ℝ1×0, 𝑏 ∈ ℝ1 (note: 𝑚, 𝑛 are not related to previous sizes)

Looks different, but it is straightforward to convert between inequality
form and standard form by adding slack variables

𝑔6
+ 𝑥 ≤ ℎ6 ⟹ 𝑔6

+ 𝑥 + 𝑠6 = ℎ6, 𝑠6 ≥ 0

Can also separate non-negative variables in positive/negative part

19

Converting to standard form

Can convert our example problem to standard form:

20

 maximize
!1,!2

 2𝑥1 + 𝑥2

subject to 3𝑥1 + 𝑥2 ≤ 9
 𝑥1 + 2𝑥2 ≤ 6
 𝑥1,𝑥2 ≥ 0

 minimize
!1,!2,!3,!4

 −2𝑥1 − 𝑥2

subject to 3𝑥1 + 𝑥2 + 𝑥3 = 9
 𝑥1 + 2𝑥2 + 𝑥4 = 6
 𝑥1,𝑥2,𝑥3,𝑥4 ≥ 0

𝑐 = −2
−1 ,𝐴 = 3 1 1 0

1 2 0 1 , 𝑏 = 9
6

Finding corners in polytope

In standard form we assume 𝑛 > 𝑚 (plus some technical conditions like
full row rank), so 𝐴 is an underdetermined system of linear equations

To find solutions to subsets of these equations, we can select 𝑚 columns
from 𝐴, denoted 𝐴ℐ for some set ℐ ⊂ {1,… , 𝑛} with ℐ = 𝑚, and
solve the resulting linear system

𝐴ℐ𝑥ℐ = 𝑏
(then set remaining entries of 𝑥 to zero)

Solutions for which 𝑥 ≥ 0, correspond to corners on the polytope

Note: We’ll use 𝐴ℐ to denote subselecting columns of 𝐴, 𝐴F to denote
the 𝑗th column of 𝐴, and 𝑥ℐ to denote subselecting element of 𝑥

21

Finding corners in polytope

Polytope from our example:

22

𝐴 = 3 1 1 0
1 2 0 1 , 𝑏 = 9

6

ℐ = {3,4}

𝑥ℐ = 𝐴ℐ
−1𝑏

 = 1 0
0 1

−1 9
6 = 9

6

𝑥 =
 0
0
9
6

x1

x2

x1 + 2x2 ≤ 6

3x1 + x2 ≤ 9

Finding corners in polytope

Polytope from our example:

23

𝐴 = 3 1 1 0
1 2 0 1 , 𝑏 = 9

6

ℐ = {1,4}

𝑥ℐ = 𝐴ℐ
−1𝑏

 = 3 0
1 1

−1 9
6 = 3

3

𝑥 =
 3
0
0
3

x1

x2

x1 + 2x2 ≤ 6

3x1 + x2 ≤ 9

Finding corners in polytope

Polytope from our example:

24

𝐴 = 3 1 1 0
1 2 0 1 , 𝑏 = 9

6

ℐ = {1,3}

𝑥ℐ = 𝐴ℐ
−1𝑏

 = 3 1
1 0

−1 9
6 = 6

−9

𝑥 =
 6
0

−9
0

x1

x2

x1 + 2x2 ≤ 6

3x1 + x2 ≤ 9

Outline

Introduction

Linear programming

Simplex algorithm

25

Simplex algorithm

Basic idea of the simplex algorithm is to move along the edges of the
polytope from corner to corner, in directions of decreasing cost

In worst case, move along an exponentially large number of corners, but
typically much better in practice (the first “practical” algorithm for linear
programming)

26

x1

x2

−c

A single step of the simplex algorithm

Suppose we are optimizing the standard form linear program
minimize

!
 𝑐+ 𝑥

subject to 𝐴𝑥 = 𝑏
 𝑥 ≥ 0

and suppose we have some initial feasible corner point 𝑥 (i.e., we have a
basis ℐ such that 𝑥ℐ = 𝐴ℐ

−1𝑏 ≥ 0)

(Seems like a big assumption, but we can relax this)

We would like to adjust this point so as to further decrease the cost, but
how do we go about adjusting it?

27

A single step of the simplex algorithm (cont)

Suppose we want to adjust 𝑥 by setting 𝑥F ← 𝛼 for some 𝑗 ∉ ℐ (i.e., so
𝑥F = 0 initially), in hopes of decreasing the objective

We cannot only change 𝑥F ← 𝛼, because this new point would not
satisfy the linear equalities

𝐴ℐ𝑥ℐ = 𝑏 ⟹ 𝐴ℐ𝑥ℐ + 𝛼𝐴F ≠ 𝑏

Instead, we need to adjust 𝑥ℐ by some 𝛼𝑑ℐ to ensure that the equality
constraint still holds

𝐴ℐ 𝑥ℐ + 𝛼𝑑ℐ + 𝛼𝐴F = 𝑏
⟹ 𝛼𝐴ℐ𝑑ℐ = 𝑏 − 𝐴ℐ𝑥ℐ − 𝛼𝐴F
⟹ 𝛼𝐴ℐ𝑑ℐ = −𝛼𝐴F because 𝐴ℐ𝑥ℐ = 𝑏
⟹ 𝑑ℐ = −𝐴ℐ

−1𝐴F

28

A single step of the simplex algorithm (cont)

Now suppose we adjust 𝑥ℐ ← 𝑥ℐ + 𝛼𝑑ℐ and 𝑥F ← 𝛼, how does this
change the objective of our optimization problem?

𝑐+ 𝑥 ← 𝑐+ 𝑥 + 𝛼 𝑐F + 𝑐ℐ
+ 𝑑ℐ

In other words, setting 𝑥F to be 𝛼 will increase objective by 𝛼𝑐F̅ where
𝑐F̅ = 𝑐F − 𝑐ℐ

+ 𝐴ℐ
−1𝐴F

Thus, as long as 𝑐F̅ is negative, it is a “good idea” to adjust 𝑥F in this
manner (if more than one 𝑐F̅ is negative, we could pick any)

If no 𝑐F̅ < 0, we have found a solution!

29

A single step of the simplex algorithm (cont)

Final question: how big of a step 𝑥F ← 𝛼 should we take?

If all 𝑑ℐ ≥ 0, we are in “luck”, we can decrease the optimization objective
arbitrarily without leaving the feasible region (i.e., an unbounded problem)

But if some element 𝑑6 < 0, for 𝑖 ∈ ℐ, we can take at most a step of size:
𝑥6 + 𝛼𝑑6 = 0 ⟹ 𝛼 = −𝑥6/𝑑6

or we would leave the feasible set

So, take the biggest step we can while keeping 𝑥 positive, i.e., find:
𝑖⋆ = argmin

6∈ℐ:PQ<0
−𝑥6/𝑑6

and take step such that 𝑥6⋆ = 0 (at this point, 𝑗 enters ℐ and 𝑖⋆ leaves)

30

Simplex algorithm

Repeat:

1. Given index set ℐ such that 𝑥ℐ = 𝐴ℐ
−1𝑏 ≥ 0

2. Find 𝑗 for which 𝑐F̅ = 𝑐F − 𝑐ℐ
+ 𝐴ℐ

−1𝐴F < 0 (if none exists, return 𝑥)

3. Compute step direction 𝑑ℐ = −𝐴ℐ
−1𝐴F and determine index to

remove (or return bounded if 𝑑ℐ ≥ 0)
𝑖⋆ = argmin

6∈ℐ:PQ<0
−𝑥6/𝑑6

4. Update index set: ℐ ← ℐ − 𝑖⋆ ∪ {𝑗}

31

Poll: simplex complexity

What is the complexity of a single iteration of the simplex algorithm?
(remember that matrix 𝐴 ∈ ℝ1×0)

1. 𝑂 𝑚𝑛

2. 𝑂 𝑚2𝑛

3. 𝑂 𝑚3 + 𝑚𝑛

4. 𝑂 𝑚3 + 𝑚2𝑛

5. 𝑂 𝑚2 + 𝑚𝑛

32

Simplex solves linear programs

Theorem: the simplex algorithm is guaranteed to find a globally optimal
solution to a linear program

Proof: (ignoring some possible degenerate cases)

If simplex returns, then it has found a point where we cannot improve the
objective locally; since linear programs are convex, this is a global
optimum

Because the objective of the simplex improves at each iteration, and
since there are a finite (but exponential) number of vertices in the
polytope, the algorithm must return after a finite number of steps

33

