
15-780 – Graduate Artificial Intelligence:
Convolutional and recurrent networks

J. Zico Kolter (this lecture) and Ariel Procaccia
Carnegie Mellon University

Spring 2017

1



Outline

Convolutional neural networks

Applications of convolutional networks

Recurrent networks

Applications of recurrent networks

2



Outline

Convolutional neural networks

Applications of convolutional networks

Recurrent networks

Applications of recurrent networks

3



The problem with fully-connected networks

A 256x256 (RGB) image ⟹ ~200K dimensional input 𝑥

A fully connected network would need a very large number of 
parameters, very likely to overfit the data

Generic deep network also does not capture the “natural” invariances we 
expect in images (translation, scale)

4

zi
zi+1

(Wi)1

zi
zi+1

(Wi)2



Convolutional neural networks

To create architectures that can handle large images, restrict the weights 
in two ways

1. Require that activations between layers only occur in “local” 
manner

2. Require that all activations share the same weights

These lead to an architecture known as a convolutional neural network

5

zi
zi+1

Wi

zi
zi+1

Wi



Convolutions

Convolutions are a basic primitive in many computer vision and image 
processing algorithms

Idea is to “slide” the weights 𝑤 (called a filter) over the image to produce a 
new image, written 𝑦 = 𝑧 ∗ 𝑤

6

w11 w12 w13

w21 w22 w23

w31 w32 w33

z11

z21

z31

z41

z51

z12

z22

z32

z42

z52

z13

z23

z33

z43

z53

z14

z24

z34

z44

z54

z15

z25

z35

z45

z55

∗ =

y11 y12 y13

y21 y22 y23

y31 y32 y33

w11 w12 w13

w21 w22 w23

w31 w32 w33

z11

z21

z31

z41

z51

z12

z22

z32

z42

z52

z13

z23

z33

z43

z53

z14

z24

z34

z44

z54

z15

z25

z35

z45

z55

∗ =

y11 y12 y13

y21 y22 y23

y31 y32 33

y11 = z11w11 + z12w12 + z13w13 + z21w21 + . . .

w11 w12 w13

w21 w22 w23

w31 w32 w33

z11

z21

z31

z41

z51

z12

z22

z32

z42

z52

z13

z23

z33

z43

z53

z14

z24

z34

z44

z54

z15

z25

z35

z45

z55

∗ =

y11 y12 y13

y21 y22 y23

y31 y32 33

y12 = z12w11 + z13w12 + z14w13 + z22w21 + . . .

w11 w12 w13

w21 w22 w23

w31 w32 w33

z11

z21

z31

z41

z51

z12

z22

z32

z42

z52

z13

z23

z33

z43

z53

z14

z24

z34

z44

z54

z15

z25

z35

z45

z55

∗ =

y11 y12 y13

y21 y22 y23

y31 y32 33

y13 = z13w11 + z14w12 + z15w13 + z23w21 + . . .

w11 w12 w13

w21 w22 w23

w31 w32 w33

z11

z21

z31

z41

z51

z12

z22

z32

z42

z52

z13

z23

z33

z43

z53

z14

z24

z34

z44

z54

z15

z25

z35

z45

z55

∗ =

y11 y12 y13

y21 y22 y23

y31 y32 33

y21 = z21w11 + z22w12 + z23w13 + z31w21 + . . .

w11 w12 w13

w21 w22 w23

w31 w32 w33

z11

z21

z31

z41

z51

z12

z22

z32

z42

z52

z13

z23

z33

z43

z53

z14

z24

z34

z44

z54

z15

z25

z35

z45

z55

∗ =

y11 y12 y13

y21 y22 y23

y31 y32 33

y22 = z22w11 + z23w12 + z24w13 + z32w21 + . . .

w11 w12 w13

w21 w22 w23

w31 w32 w33

z11

z21

z31

z41

z51

z12

z22

z32

z42

z52

z13

z23

z33

z43

z53

z14

z24

z34

z44

z54

z15

z25

z35

z45

z55

∗ =

y11 y12 y13

y21 y22 y23

y31 y32 33

y23 = z23w11 + z24w12 + z25w13 + z33w21 + . . .



Convolutions in image processing

Convolutions (typically with prespecified filters) are a common operation in 
many computer vision applications

7

Original image 𝑧

𝑧 ∗

1 4 7
4 16 26

4 1
16 4

7 26 41
4 16 26
1 4 4

26 7
16 4
4 1

/273 𝑧 ∗
−1 0 1
−2 0 2
−1 0 1

2

+ 𝑧 ∗
−1 −2 −1
0 0 0
1 2 1

2
1
2

Gaussian blur Image gradient



Convolutional neural networks

Idea of a convolutional neural network, in some sense, is to let the 
network “learn” the right filters for the specified task

In practice, we actually use “3D” convolutions, which apply a separate 
convolution to multiple layers of the image, then add the results together

8

zi
zi+1

(Wi)1

zi
zi+1

(Wi)2



Additional on convolutions

For anyone with a signal processing background: this is actually not what 
you call a convolution, this is a correlation (convolution with the filter 
flipped upside-down and left-right)

It’s common to “zero pad” the input image so that the resulting image is 
the same size

Also common to use a max-pooling operation that shrinks images by 
taking max over a region (also common: strided convolutions)

9

zi
zi+1

max



Number of parameters

Consider a convolutional network that takes as input color (RGB) 32x32 
images, and uses the layers (all convolutional layers use zero-padding)

1. 5x5x64 convolution
2. 2x2 Maxpooling
3. 3x3x128 convolution
4. 2x2 Maxpooling
5. Fully-connected to 10-dimensional output

How many parameters does this network have?
1. O(10^3)
2. O(10^4)
3. O(10^5)
4. O(10^6)

10



Learning with convolutions

How do we apply backpropagation to neural networks with convolutions?
𝑧*+1 = 𝑓*(𝑧* ∗ 𝑤* + 𝑏*)

Remember that for a dense layer 𝑧*+1 = 𝑓*(𝑊*𝑧* + 𝑏*), forward pass 
required multiplication by 𝑊* and backward pass required multiplication 
by 𝑊*

.

We’re going to show that convolution is a type of (highly structured) 
matrix multiplication, and show how to compute the multiplication by its 
tranpose

11



Convolutions as matrix multiplication

Consider initially a 1D convolution 𝑧* ∗ 𝑤* for 𝑤* ∈ ℝ3, 𝑧* ∈ ℝ6

Then 𝑧* ∗ 𝑤* = 𝑊*𝑧* for 

𝑊* = 

𝑤1 𝑤2
0 𝑤1
0 0
0 0

𝑤3 0
𝑤2 𝑤3
𝑤1 𝑤2
0 𝑤1

0 0
0 0

𝑤3 0
𝑤2 𝑤3

So how do we multiply by 𝑊*
. ?

12



Convolutions as matrix multiplication, cont

Multiplication by transpose is just

𝑊*
. 𝑔*+1 = 

𝑤1 0
𝑤2 𝑤1
𝑤3 𝑤2
0 𝑤3
0 0
0 0

0 0
0 0

𝑤1 0
𝑤2 𝑤1
𝑤3 𝑤2
0 𝑤3

𝑔*+1 =

0
0

𝑔*+1
0
0

∗ 𝑤*

where 𝑤*+1 is just the flipped version of 𝑤*

In other words, transpose of convolution is just (zero-padded) convolution 
by flipped filter (correlations for signal processing people)

Property holds for 2D convolutions, backprop just flips convolutions

13



Outline

Convolutional neural networks

Applications of convolutional networks

Recurrent networks

Applications of recurrent networks

14



LeNet network, digit classification

The network that started it all (and then stopped for ~14 years)

15

INPUT 
32x32

Convolutions SubsamplingConvolutions

C1: feature maps 
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5
C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection
Full connection

Gaussian connections

OUTPUT
 10

LeNet-5 (LeCun et al., 1998) architecture, achieves 1% error 
in MNIST digit classification 



Image classification

Recent ImageNet classification challenges

16

Figure 4: (Left) Eight ILSVRC-2010 test images and the five labels considered most probable by our model.
The correct label is written under each image, and the probability assigned to the correct label is also shown
with a red bar (if it happens to be in the top 5). (Right) Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that produce feature vectors in the last hidden layer with the
smallest Euclidean distance from the feature vector for the test image.

In the left panel of Figure 4 we qualitatively assess what the network has learned by computing its
top-5 predictions on eight test images. Notice that even off-center objects, such as the mite in the
top-left, can be recognized by the net. Most of the top-5 labels appear reasonable. For example,
only other types of cat are considered plausible labels for the leopard. In some cases (grille, cherry)
there is genuine ambiguity about the intended focus of the photograph.

Another way to probe the network’s visual knowledge is to consider the feature activations induced
by an image at the last, 4096-dimensional hidden layer. If two images produce feature activation
vectors with a small Euclidean separation, we can say that the higher levels of the neural network
consider them to be similar. Figure 4 shows five images from the test set and the six images from
the training set that are most similar to each of them according to this measure. Notice that at the
pixel level, the retrieved training images are generally not close in L2 to the query images in the first
column. For example, the retrieved dogs and elephants appear in a variety of poses. We present the
results for many more test images in the supplementary material.

Computing similarity by using Euclidean distance between two 4096-dimensional, real-valued vec-
tors is inefficient, but it could be made efficient by training an auto-encoder to compress these vectors
to short binary codes. This should produce a much better image retrieval method than applying auto-
encoders to the raw pixels [14], which does not make use of image labels and hence has a tendency
to retrieve images with similar patterns of edges, whether or not they are semantically similar.

7 Discussion

Our results show that a large, deep convolutional neural network is capable of achieving record-
breaking results on a highly challenging dataset using purely supervised learning. It is notable
that our network’s performance degrades if a single convolutional layer is removed. For example,
removing any of the middle layers results in a loss of about 2% for the top-1 performance of the
network. So the depth really is important for achieving our results.

To simplify our experiments, we did not use any unsupervised pre-training even though we expect
that it will help, especially if we obtain enough computational power to significantly increase the
size of the network without obtaining a corresponding increase in the amount of labeled data. Thus
far, our results have improved as we have made our network larger and trained it longer but we still
have many orders of magnitude to go in order to match the infero-temporal pathway of the human
visual system. Ultimately we would like to use very large and deep convolutional nets on video
sequences where the temporal structure provides very helpful information that is missing or far less
obvious in static images.

8



Using intermediate layers as features

Increasingly common to use later-stage layers of pre-trained image 
classification networks as features for image classification tasks

Classify dogs/cats based upon 2000 images (1000 of each class):
Approach 1: Convolution network from scratch: 80%
Approach 2: Final-layer from VGG network -> dense net: 90%
Approach 3: Also fine-tune last convolution features: 94%

17

https://blog.keras.io/building-powerful-image-classification-
models-using-very-little-data.html



Playing Atari games

18



Neural style

Adjust input image to 
make feature activations 
(really, inner products of 
feature activations), match 
target (art) images (Gatys
et al., 2016)

19



Detecting cancerous cells in images

20

https://research.googleblog.com/2017/03/assisting-
pathologists-in-detecting.html



Outline

Convolutional neural networks

Applications of convolutional networks

Recurrent networks

Applications of recurrent networks

21



Predicting temporal data

So far, the models we have discussed are application to independent 
inputs 𝑥 1 ,… , 𝑥 4

In practice, we often want to predict a sequence of outputs, given a 
sequence of inputs (predicting independently would miss correlations)

Examples: time series forecasting, sentence labeling, speech to text, etc

22

x(1) x(2) x(3)

y(1) y(2) y(3)

· · ·



Recurrent neural networks

Maintain hidden state over time, hidden state is a function of current input 
and previous hidden state

23

x(1) x(2) x(3)

ŷ(1) ŷ(2) ŷ(3)

z(1) z(2) z(3)

· · ·

Wxz Wxz Wxz

Wzy Wzy Wzy

Wzz Wzz Wzz 𝑧 5 = 𝑓6 𝑊76𝑥 5 + 𝑊66𝑧 5−1 + 𝑏6
𝑦 ̂ 5 = 𝑓9(𝑊69𝑧 5 + 𝑏9)



Training recurrent networks

Most common training approach is to “unroll” the RNN on some dataset, 
and minimize the loss function

minimize
:;<,:<<,:<>

 ∑ ℓ 𝑦̂ 5 , 𝑦 5
4

*=1

Note that the network will have the “same” parameters in a lot of places in 
the network (e.g., the same 𝑊66 matrix occurs in each step); advance of 
computation graph approach is that it’s easy to compute these complex 
gradients

Some issues: initializing first hidden layer (just set it to all zeros), how long 
a sequence (pick something big, like >100)

24



LSTM networks

Trouble with plain RNNs is that it is difficult to capture long-term 
dependencies (e.g. if we see a “(“ character, we expected a “)” to follow at 
some point)

Problem has to do with vanishing gradient, for many activations like 
sigmoid, tanh, gradients get smaller and smaller over subsequent layers 
(and ReLU’s have their own problems)

One solution, long short term memory (Hochreiter and Schmidhuber, 
1997), has more complex structure that specifically encodes memory and 
pass-through features, able to model long-term dependencies

25

Evolving Recurrent Neural Network Architectures

Figure 1. The LSTM architecture. The value of the cell is in-
creased by it�jt, where � is element-wise product. The LSTM’s
output is typically taken to be ht, and ct is not exposed. The for-
get gate ft allows the LSTM to easily reset the value of the cell.

we can close the gap between the LSTM and the better ar-
chitectures. Thus, we recommend to increase the bias to
the forget gate before attempting to use more sophisticated
approaches.

We also performed ablative experiments to measure the im-
portance of each of the LSTM’s many components. We dis-
covered that the input gate is important, that the output gate
is unimportant, and that the forget gate is extremely signif-
icant on all problems except language modelling. This is
consistent with Mikolov et al. (2014), who showed that a
standard RNN with a hard-coded integrator unit (similar to
an LSTM without a forget gate) can match the LSTM on
language modelling.

2. Long Short-Term Memory
In this section, we briefly explain why RNNs can be dif-
ficult to train and how the LSTM addresses the vanishing
gradient problem.

Standard RNNs suffer from both exploding and vanishing
gradients (Hochreiter, 1991; Bengio et al., 1994). Both
problems are caused by the RNN’s iterative nature, whose
gradient is essentially equal to the recurrent weight matrix
raised to a high power. These iterated matrix powers cause
the gradient to grow or to shrink at a rate that is exponential
in the number of timesteps.

The exploding gradients problem is relatively easy to
handle by simply shrinking gradients whose norms ex-
ceed a threshold, a technique known as gradient clipping
(Mikolov, 2012; Pascanu et al., 2012). While learning
would suffer if the gradient is reduced by a massive fac-

tor too frequently, gradient clipping is extremely effective
whenever the gradient has a small norm the majority of the
time.

The vanishing gradient is more challenging because it does
not cause the gradient itself to be small; while the gradi-
ent’s component in directions that correspond to long-term
dependencies is small, while the gradient’s component in
directions that correspond to short-term dependencies is
large. As a result, RNNs can easily learn the short-term
but not the long-term dependencies.

The LSTM addresses the vanishing gradient problem by
reparameterizing the RNN. Thus, while the LSTM does
not have a representational advantage, its gradient cannot
vanish. In the discussion that follows, let S

t

denote a hid-
den state of an unspecified RNN architecture. The LSTM’s
main idea is that, instead of computing S

t

from S

t�1

di-
rectly with a matrix-vector product followed by a nonlin-
earity, the LSTM directly computes �S

t

, which is then
added to S

t�1

to obtain S

t

. At first glance, this difference
may appear insignificant since we obtain the same S

t

in
both cases. And it is true that computing �S

t

and adding
it to S

t

does not result in a more powerful model. How-
ever, just like a tanh-based network has better-behaved gra-
dients than a sigmoid-based network, the gradients of an
RNN that computes �S

t

are nicer as well, since they can-
not vanish.

More concretely, suppose that we run our architecture for
1000 timesteps to compute S

1000

, and suppose that we wish
to classify the entire sequence into two classes using S

1000

.
Given that S

1000

=

P
1000

t=1

�S

t

, every single �S

t

(in-
cluding �S

1

) will receive a sizeable contribution from the
gradient at timestep 1000. This immediately implies that
the gradient of the long-term dependencies cannot vanish.
It may become “smeared”, but it will never be negligibly
small.

The full LSTM’s definition includes circuitry for comput-
ing �S

t

and circuitry for decoding information from S

t

.
Unfortunately, different practitioners use slightly different
LSTM variants. In this work, we use the LSTM architec-
ture that is precisely specified below. It is similar to the
architecture of Graves (2013) but without peep-hole con-
nections:

i

t

= tanh(W

xi

x

t

+W

hi

h

t�1

+ b

i

)

j

t

= sigm(W

xj

x

t

+W

hj

h

t�1

+ b

j

)

f

t

= sigm(W

xf

x

t

+W

hf

h

t�1

+ b

f

)

o

t

= tanh(W

xo

x

t

+W

ho

h

t�1

+ b

o

)

c

t

= c

t�1

� f

t

+ i

t

� j

t

h

t

= tanh(c

t

)� o

t

In these equations, the W⇤ variables are the weight matri-
ces and the b⇤ variables are the biases. The operation �

Evolving Recurrent Neural Network Architectures

Figure 1. The LSTM architecture. The value of the cell is in-
creased by it�jt, where � is element-wise product. The LSTM’s
output is typically taken to be ht, and ct is not exposed. The for-
get gate ft allows the LSTM to easily reset the value of the cell.

we can close the gap between the LSTM and the better ar-
chitectures. Thus, we recommend to increase the bias to
the forget gate before attempting to use more sophisticated
approaches.

We also performed ablative experiments to measure the im-
portance of each of the LSTM’s many components. We dis-
covered that the input gate is important, that the output gate
is unimportant, and that the forget gate is extremely signif-
icant on all problems except language modelling. This is
consistent with Mikolov et al. (2014), who showed that a
standard RNN with a hard-coded integrator unit (similar to
an LSTM without a forget gate) can match the LSTM on
language modelling.

2. Long Short-Term Memory
In this section, we briefly explain why RNNs can be dif-
ficult to train and how the LSTM addresses the vanishing
gradient problem.

Standard RNNs suffer from both exploding and vanishing
gradients (Hochreiter, 1991; Bengio et al., 1994). Both
problems are caused by the RNN’s iterative nature, whose
gradient is essentially equal to the recurrent weight matrix
raised to a high power. These iterated matrix powers cause
the gradient to grow or to shrink at a rate that is exponential
in the number of timesteps.

The exploding gradients problem is relatively easy to
handle by simply shrinking gradients whose norms ex-
ceed a threshold, a technique known as gradient clipping
(Mikolov, 2012; Pascanu et al., 2012). While learning
would suffer if the gradient is reduced by a massive fac-

tor too frequently, gradient clipping is extremely effective
whenever the gradient has a small norm the majority of the
time.

The vanishing gradient is more challenging because it does
not cause the gradient itself to be small; while the gradi-
ent’s component in directions that correspond to long-term
dependencies is small, while the gradient’s component in
directions that correspond to short-term dependencies is
large. As a result, RNNs can easily learn the short-term
but not the long-term dependencies.

The LSTM addresses the vanishing gradient problem by
reparameterizing the RNN. Thus, while the LSTM does
not have a representational advantage, its gradient cannot
vanish. In the discussion that follows, let S

t

denote a hid-
den state of an unspecified RNN architecture. The LSTM’s
main idea is that, instead of computing S

t

from S

t�1

di-
rectly with a matrix-vector product followed by a nonlin-
earity, the LSTM directly computes �S

t

, which is then
added to S

t�1

to obtain S

t

. At first glance, this difference
may appear insignificant since we obtain the same S

t

in
both cases. And it is true that computing �S

t

and adding
it to S

t

does not result in a more powerful model. How-
ever, just like a tanh-based network has better-behaved gra-
dients than a sigmoid-based network, the gradients of an
RNN that computes �S

t

are nicer as well, since they can-
not vanish.

More concretely, suppose that we run our architecture for
1000 timesteps to compute S

1000

, and suppose that we wish
to classify the entire sequence into two classes using S

1000

.
Given that S

1000

=

P
1000

t=1

�S

t

, every single �S

t

(in-
cluding �S

1

) will receive a sizeable contribution from the
gradient at timestep 1000. This immediately implies that
the gradient of the long-term dependencies cannot vanish.
It may become “smeared”, but it will never be negligibly
small.

The full LSTM’s definition includes circuitry for comput-
ing �S

t

and circuitry for decoding information from S

t

.
Unfortunately, different practitioners use slightly different
LSTM variants. In this work, we use the LSTM architec-
ture that is precisely specified below. It is similar to the
architecture of Graves (2013) but without peep-hole con-
nections:

i

t

= tanh(W

xi

x

t

+W

hi

h

t�1

+ b

i

)

j

t

= sigm(W

xj

x

t

+W

hj

h

t�1

+ b

j

)

f

t

= sigm(W

xf

x

t

+W

hf

h

t�1

+ b

f

)

o

t

= tanh(W

xo

x

t

+W

ho

h

t�1

+ b

o

)

c

t

= c

t�1

� f

t

+ i

t

� j

t

h

t

= tanh(c

t

)� o

t

In these equations, the W⇤ variables are the weight matri-
ces and the b⇤ variables are the biases. The operation �

Figure from
(Jozefowicz et al., 2015)



Outline

Convolutional neural networks

Applications of convolutional networks

Recurrent networks

Applications of recurrent networks

26



Char-RNN

Excellent tutorial available at: http://karpathy.github.io/2015/05/21/rnn-
effectiveness/

Basic idea is to build an RNN (using stacked LSTMs) that predicts the 
next character from some text given previous characters

27



Sample code from Char-RNN

Char-RNN trained on code of Linux kernel

28

/*
* Increment the size file of the new incorrect UI_FILTER group information
* of the size generatively.
*/
static int indicate_policy(void)
{
int error;
if (fd == MARN_EPT) {
/*
* The kernel blank will coeld it to userspace.
*/
if (ss->segment < mem_total)
unblock_graph_and_set_blocked();

else
ret = 1;

goto bail;
}
segaddr = in_SB(in.addr);
selector = seg / 16;
setup_works = true;

…



Sample Latex from Char-RNN

Char-RNN trained on Latex source of textbook on algebraic geometry 

29



Sequence to sequence models

Idea: use LSTM without outputs on “input” sequence, then auto-
regressive LSTM on output sequence (Sutskever et al., 2014)

30

sequence of words representing the answer. It is therefore clear that a domain-independent method
that learns to map sequences to sequences would be useful.

Sequences pose a challenge for DNNs because they require that the dimensionality of the inputs and
outputs is known and fixed. In this paper, we show that a straightforward application of the Long
Short-Term Memory (LSTM) architecture [16] can solve general sequence to sequence problems.
The idea is to use one LSTM to read the input sequence, one timestep at a time, to obtain large fixed-
dimensional vector representation, and then to use another LSTM to extract the output sequence
from that vector (fig. 1). The second LSTM is essentially a recurrent neural network language model
[28, 23, 30] except that it is conditioned on the input sequence. The LSTM’s ability to successfully
learn on data with long range temporal dependencies makes it a natural choice for this application
due to the considerable time lag between the inputs and their corresponding outputs (fig. 1).

There have been a number of related attempts to address the general sequence to sequence learning
problem with neural networks. Our approach is closely related to Kalchbrenner and Blunsom [18]
who were the first to map the entire input sentence to vector, and is very similar to Cho et al. [5].
Graves [10] introduced a novel differentiable attention mechanism that allows neural networks to
focus on different parts of their input, and an elegant variant of this idea was successfully applied
to machine translation by Bahdanau et al. [2]. The Connectionist Sequence Classification is another
popular technique for mapping sequences to sequences with neural networks, although it assumes a
monotonic alignment between the inputs and the outputs [11].

Figure 1: Our model reads an input sentence “ABC” and produces “WXYZ” as the output sentence. The
model stops making predictions after outputting the end-of-sentence token. Note that the LSTM reads the
input sentence in reverse, because doing so introduces many short term dependencies in the data that make the
optimization problem much easier.

The main result of this work is the following. On the WMT’14 English to French translation task,
we obtained a BLEU score of 34.81 by directly extracting translations from an ensemble of 5 deep
LSTMs (with 380M parameters each) using a simple left-to-right beam-search decoder. This is
by far the best result achieved by direct translation with large neural networks. For comparison,
the BLEU score of a SMT baseline on this dataset is 33.30 [29]. The 34.81 BLEU score was
achieved by an LSTM with a vocabulary of 80k words, so the score was penalized whenever the
reference translation contained a word not covered by these 80k. This result shows that a relatively
unoptimized neural network architecture which has much room for improvement outperforms a
mature phrase-based SMT system.

Finally, we used the LSTM to rescore the publicly available 1000-best lists of the SMT baseline on
the same task [29]. By doing so, we obtained a BLEU score of 36.5, which improves the baseline
by 3.2 BLEU points and is close to the previous state-of-the-art (which is 37.0 [9]).

Surprisingly, the LSTM did not suffer on very long sentences, despite the recent experience of other
researchers with related architectures [26]. We were able to do well on long sentences because we
reversed the order of words in the source sentence but not the target sentences in the training and test
set. By doing so, we introduced many short term dependencies that made the optimization problem
much simpler (see sec. 2 and 3.3). As a result, SGD could learn LSTMs that had no trouble with
long sentences. The simple trick of reversing the words in the source sentence is one of the key
technical contributions of this work.

A useful property of the LSTM is that it learns to map an input sentence of variable length into
a fixed-dimensional vector representation. Given that translations tend to be paraphrases of the
source sentences, the translation objective encourages the LSTM to find sentence representations
that capture their meaning, as sentences with similar meanings are close to each other while different

2



Machine translation

A scale-up of sequence to sequence learning, now underlying much of 
Google’s machine translation methods (Wu et al., 2016)

31Figure 1: The model architecture of GNMT, Google’s Neural Machine Translation system. On the left
is the encoder network, on the right is the decoder network, in the middle is the attention module. The
bottom encoder layer is bi-directional: the pink nodes gather information from left to right while the green
nodes gather information from right to left. The other layers of the encoder are uni-directional. Residual
connections start from the layer third from the bottom in the encoder and decoder. The model is partitioned
into multiple GPUs to speed up training. In our setup, we have 8 encoder LSTM layers (1 bi-directional layer
and 7 uni-directional layers), and 8 decoder layers. With this setting, one model replica is partitioned 8-ways
and is placed on 8 di�erent GPUs typically belonging to one host machine. During training, the bottom
bi-directional encoder layers compute in parallel first. Once both finish, the uni-directional encoder layers
can start computing, each on a separate GPU. To retain as much parallelism as possible during running
the decoder layers, we use the bottom decoder layer output only for obtaining recurrent attention context,
which is sent directly to all the remaining decoder layers. The softmax layer is also partitioned and placed on
multiple GPUs. Depending on the output vocabulary size we either have them run on the same GPUs as the
encoder and decoder networks, or have them run on a separate set of dedicated GPUs.

context ai for the current time step is computed according to the following formulas:

st = AttentionFunction(yi≠1

, xt) ’t, 1 Æ t Æ M

pt = exp(st)/
Mÿ

t=1

exp(st) ’t, 1 Æ t Æ M

ai =
Mÿ

t=1

pt.xt

(4)

where AttentionFunction in our implementation is a feed forward network with one hidden layer.

3.1 Residual Connections
As mentioned above, deep stacked LSTMs often give better accuracy over shallower models. However, simply
stacking more layers of LSTM works only to a certain number of layers, beyond which the network becomes

4



Take convolutional network and feed it into the first hidden layer of a 
recurrent neural network 

Combining RNNs and CNNs

32

but effective extension that additionally conditions the gen-
erative process on the content of an input image. More for-
mally, during training our Multimodal RNN takes the image
pixels I and a sequence of input vectors (x1, . . . , xT

). It
then computes a sequence of hidden states (h1, . . . , ht

) and
a sequence of outputs (y1, . . . , yt) by iterating the following
recurrence relation for t = 1 to T :

b

v

= W

hi

[CNN
✓c(I)] (13)

h

t

= f(W
hx

x

t

+W

hh

h

t�1 + b

h

+ (t = 1)� b

v

) (14)
y

t

= softmax(W
oh

h

t

+ b

o

). (15)

In the equations above, W
hi

,W

hx

,W

hh

,W

oh

, x

i

and b

h

, b

o

are learnable parameters, and CNN
✓c(I) is the last layer of

a CNN. The output vector y
t

holds the (unnormalized) log
probabilities of words in the dictionary and one additional
dimension for a special END token. Note that we provide
the image context vector b

v

to the RNN only at the first
iteration, which we found to work better than at each time
step. In practice we also found that it can help to also pass
both b

v

, (W
hx

x

t

) through the activation function. A typical
size of the hidden layer of the RNN is 512 neurons.

RNN training. The RNN is trained to combine a word (x
t

),
the previous context (h

t�1) to predict the next word (y
t

).
We condition the RNN’s predictions on the image informa-
tion (b

v

) via bias interactions on the first step. The training
proceeds as follows (refer to Figure 4): We set h0 = ~0, x1 to
a special START vector, and the desired label y1 as the first
word in the sequence. Analogously, we set x2 to the word
vector of the first word and expect the network to predict
the second word, etc. Finally, on the last step when x

T

rep-
resents the last word, the target label is set to a special END
token. The cost function is to maximize the log probability
assigned to the target labels (i.e. Softmax classifier).

RNN at test time. To predict a sentence, we compute the
image representation b

v

, set h0 = 0, x1 to the START vec-
tor and compute the distribution over the first word y1. We
sample a word from the distribution (or pick the argmax),
set its embedding vector as x2, and repeat this process until
the END token is generated. In practice we found that beam
search (e.g. beam size 7) can improve results.

3.3. Optimization
We use SGD with mini-batches of 100 image-sentence pairs
and momentum of 0.9 to optimize the alignment model. We
cross-validate the learning rate and the weight decay. We
also use dropout regularization in all layers except in the
recurrent layers [59] and clip gradients elementwise at 5
(important). The generative RNN is more difficult to op-
timize, party due to the word frequency disparity between
rare words and common words (e.g. ”a” or the END token).
We achieved the best results using RMSprop [52], which is
an adaptive step size method that scales the update of each
weight by a running average of its gradient norm.

Figure 4. Diagram of our multimodal Recurrent Neural Network
generative model. The RNN takes a word, the context from previ-
ous time steps and defines a distribution over the next word in the
sentence. The RNN is conditioned on the image information at the
first time step. START and END are special tokens.

4. Experiments
Datasets. We use the Flickr8K [21], Flickr30K [58] and
MSCOCO [37] datasets in our experiments. These datasets
contain 8,000, 31,000 and 123,000 images respectively
and each is annotated with 5 sentences using Amazon
Mechanical Turk. For Flickr8K and Flickr30K, we use
1,000 images for validation, 1,000 for testing and the rest
for training (consistent with [21, 24]). For MSCOCO we
use 5,000 images for both validation and testing.
Data Preprocessing. We convert all sentences to lower-
case, discard non-alphanumeric characters. We filter words
to those that occur at least 5 times in the training set,
which results in 2538, 7414, and 8791 words for Flickr8k,
Flickr30K, and MSCOCO datasets respectively.

4.1. Image-Sentence Alignment Evaluation
We first investigate the quality of the inferred text and image
alignments with ranking experiments. We consider a with-
held set of images and sentences and retrieve items in one
modality given a query from the other by sorting based on
the image-sentence score S

kl

(Section 3.1.3). We report the
median rank of the closest ground truth result in the list and
Recall@K, which measures the fraction of times a correct
item was found among the top K results. The result of these
experiments can be found in Table 1, and example retrievals
in Figure 5. We now highlight some of the takeaways.

Our full model outperforms previous work. First, our
full model (“Our model: BRNN”) outperforms Socher et
al. [49] who trained with a similar loss but used a single
image representation and a Recursive Neural Network over
the sentence. A similar loss was adopted by Kiros et al.
[25], who use an LSTM [20] to encode sentences. We list
their performance with a CNN that is equivalent in power
(AlexNet [28]) to the one used in this work, though simi-
lar to [54] they outperform our model with a more powerful
CNN (VGGNet [47], GoogLeNet [51]). “DeFrag” are the
results reported by Karpathy et al. [24]. Since we use dif-
ferent word vectors, dropout for regularization and different
cross-validation ranges and larger embedding sizes, we re-
implemented their loss for a fair comparison (“Our imple-


