15780: GRaduate AI (Spring 2017)

Practice Midterm Exam
(Solutions)

February 23, 2017

Topic	Total Score	Score
Heuristic Search	25	
VC Dimension	25	
Integer Programming	25	
Convex Optimization	25	
Total	100	

1 Heuristic Search [25 points]

Consider the problem of informed search with a heuristic. For each state x, let $h^{*}(x)$ be the length of the cheapest path from x to a goal.

Prove or disprove the following statements:
1.1 [15 points] If $h(x)=2 h^{*}(x)$ for all states x, then A^{*} tree search with the heuristic h is optimal.

Solution: This is false. We give a counterexample.

Note that $f(A)=4+2(1)=6, f(B)=1+2(3)=7$ so A^{*} will expand node A first. Then from node A, we have $f(G)=5$, so we will expand node G and return the path S-A-G as the optimal path. However this is not the real optimal path. The real optimal path is S-B-G with a cost of 4.
1.2 [10 points] If h is a consistent heuristic, A^{*} graph search with the heuristic $h^{\prime}(x)=h(x) / 2$ is optimal.

Solution: This is true. Since h is consistent, this means for any node x and its successor x^{\prime} we know that $h(x) \leq c\left(x, x^{\prime}\right)+h\left(x^{\prime}\right)$. This implies $h(x) / 2 \leq c\left(x, x^{\prime}\right) / 2+h\left(x^{\prime}\right) / 2$. Since costs are nonnegative, this also implies that $h(x) / 2 \leq c\left(x, x^{\prime}\right)+h\left(x^{\prime}\right) / 2$. Thus h^{\prime} is also consistent and we know that A^{*} graph search with a consistent heuristic is optimal.

2 Learning Theory [25 points]

Determine the VC dimension of the following function classes.
2.1 [15 points] Define F to be the set of strings of length 3 composed of the symbols 0,1 , and $*$. Each $f \in F$ acts as a pattern matcher; i.e., when applied to a binary string s, it either accepts or rejects s. For example, when we apply the schema $f=1 * *$ to the string $s=101$, it accepts, and when we apply f to $s^{\prime}=010$, it rejects. What is the VC dimension of F ?

Solution: The VC dimension is 3 . The set $\{001,010,100\}$ can be shattered. For any set of size 4, note that if there are any two strings that differ at all three positions (call them s and s^{\prime}), then the set $+\left\{s, s^{\prime}\right\}$ can only be labeled with three wildcard characters, which also matches the rest of the strings not labeled +. Further, this means that there must be at least two pairs of strings at distance two from each other. In order to see this, put the strings on the vertices of a cube connected by edges between strings that differ from one another at exactly one position. Now, note that we can't realize this split. A pattern that matches one pair of strings must necessarily also match one string in the other pair. Concretely, this is because a pattern that matches strings s_{1} and s_{2} that differ in two positions must have two wildcards, and the third position, which is shared by s_{1} and s_{2}, must differ between s_{3} and s_{4}, meaning that one of s_{3} and s_{4} must match the pattern as well.
2.2 [10 points] The union of n intervals on the real line.

Solution: The VC dimension is $2 n$. It's pretty clear that we can shatter $2 n$ points, as this is equivalent to essentially using one interval for every consecutive pair of adjacent points. It's also not possible to shatter $2 n+1$ points because the assignment that alternates between +1 and -1 needs $n+1$ intervals.

3 Integer Programming [25 points]

Consider an undirected graph $G=(V, E)$. A minimum dominating set is a smallest subset S of V such that every node not in S is adjacent to at least one node in S. A minimum independent dominating set is a smallest subset S of V such that (1) every node not in S is adjacent to at least one node in S and (2) no pair of nodes in S are adjacent. In your answer, you can use $N(i)$ to denote the set of neighbors of node i (i.e., $N(i)$ is a set of nodes adjacent to i) for each node $i \in V$. Note that $i \notin N(i)$. You also can use $(i, j) \in E$ to denote the edge between node $i \in V$ and node $j \in V$.
3.1 [15 points] Formulate an integer linear program to find a minimum dominating set.

Solution: Consider the following the integer program:

$$
\begin{aligned}
& \operatorname{minimize} \sum_{i=1}^{n} x_{i} \\
& \text { subject to } \sum_{j \in N(i) \cup\{i\}} x_{j} \geq 1, \forall i \in V, \\
& \text { and } x_{i}=\{0,1\}, \forall i \in V .
\end{aligned}
$$

If you solve this integer program, $S=\left\{i \in V: x_{i}=1\right\}$ is a minimum dominating set.
3.2 [10 points] Formulate an integer linear program to find a minimum independent dominating set.

Solution: Consider the following the integer program:

$$
\begin{aligned}
& \operatorname{minimize} \sum_{i=1}^{n} x_{i} \\
& \text { subject to } \sum_{j \in N(i) \cup\{i\}} x_{j} \geq 1, \forall i \in V, \\
& \text { and } x_{i}+x_{j} \leq 1, \forall(i, j) \in E, \\
& \text { and } x_{i}=\{0,1\}, \forall i \in V .
\end{aligned}
$$

If you solve this integer program, $S=\left\{i \in V: x_{i}=1\right\}$ is a minimum independent dominating set.

4 Convex Optimization [25 points]

Consider a linear program of the standard form: minimize $\mathbf{c}^{T} \mathbf{x}$ such that $\mathbf{A x} \leq \mathbf{b}$. Here $\mathbf{x} \in \mathbb{R}^{n}$ is the vector of variables, and $\mathbf{c} \in \mathbb{R}^{n}, \mathbf{A} \in \mathbb{R}^{m \times n}$, and $\mathbf{b} \in \mathbb{R}^{m}$ are constants.

Prove from the definitions that this is a convex program.
Solution: First, we show that the objective function is linear, which we denote by f. Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$, and let $0 \leq \theta \leq 1$. We need to show $f(\theta \mathbf{x}+(1-\theta) \mathbf{y}) \leq \theta f(\mathbf{x})+(1-\theta) f(\mathbf{y})$. We have

$$
\begin{aligned}
f(\theta \mathbf{x}+(1-\theta) \mathbf{y}) & =\mathbf{c}^{T}(\theta \mathbf{x}+(1-\theta) \mathbf{y})=\mathbf{c}^{T}(\theta \mathbf{x})+\mathbf{c}^{T}((1-\theta) \mathbf{y}) \\
& =\theta \mathbf{c}^{T} \mathbf{x}+(1-\theta) \mathbf{c}^{T} \mathbf{y}=\theta f(\mathbf{x})+(1-\theta) f(\mathbf{y})
\end{aligned}
$$

Thus, we conclude that the desired inequality holds (in fact, it holds with equality). Next, we show that the feasible region $\mathcal{F}=\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{A x} \leq \mathbf{b}\right\}$ is convex. For this, let $\mathbf{x}, \mathbf{y} \in \mathcal{F}$ and let $0 \leq \theta \leq 1$. We need to show that $\theta \mathbf{x}+(1-\theta) \mathbf{y} \in \mathcal{F}$ as well, which amounts to showing $\mathbf{A}(\theta \mathbf{x}+(1-\theta) \mathbf{y}) \leq \mathbf{b}$. We have

$$
\begin{aligned}
\mathbf{A}(\theta \mathbf{x}+(1-\theta) \mathbf{y}) & =\mathbf{A}(\theta \mathbf{x})+\mathbf{A}((1-\theta) \mathbf{y})=\theta \mathbf{A} \mathbf{x}+(1-\theta) \mathbf{A} \mathbf{y} \\
& \leq \theta \mathbf{b}+(1-\theta) \mathbf{b}=(\theta+1-\theta) \mathbf{b}=\mathbf{b}
\end{aligned}
$$

This completes the proof that \mathcal{F} is convex, and hence the proof that a linear program is a convex program.

