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Abstract

This paper provides three short and very simple proofs of the clas-
sical Gibbard-Satterthwaite theorem. The theorem is …rst proved in
the case with only two individuals in the economy. The many individ-
ual case follows then from an induction argument (over the number of
individuals). The proof of the theorem is further simpli…ed when the
voting rule is assumed to be neutral.

The standard voting model is also extended to a model where
monetary compensations are possible. The class of strategy-proof and
nonbossy voting rules are then characterized.
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1 Introduction
The main objective of this paper is to present short and very simple proofs
of the classical Gibbard - Satterthwaite theorem (Gibbard (1973), Satterth-
waite (1975)). In its original form the theorem says that if a …nite number
of individuals have to select one among a …nite number of alternatives by
some kind of voting rule where sincere reporting of preferences is in the self-
interest of the individuals (strategy-proofness), then the voting rule has to
be dictatorial.

Among the existing proofs of this theorem, one can distinguish two di¤er-
ent lines. The …rst one, and the common one, is based on Arrow’s impossibil-
ity theorem and exploits the correspondence between strategy-proofness and
the independence of irrelevant alternatives requirement. The other approach
to prove the theorem is more direct and can be found in e.g. Barberá (1983)
and in Barberá and Peleg (1990). In particular, the paper of Barberá and
Peleg provides a short and elegant proof of the theorem in the case with two
individuals in the economy.

Here we also employ the direct approach and …rst prove the theorem
when there are two individuals. The proof and the arguments in this paper
di¤er from the proof in Barberá and Peleg in the two individual case, and
in addition, we follow up with a simple induction proof in the many (but
…nite) individual case.1 The proof is further simpli…ed when the voting rule
is assumed to be neutral.

The voting model analyzed so far is a model with a …nite number of indi-
visible public goods. A second objective of the present study is to analyze the
consequences of adding a divisible private good (money) to the basic model,
a good that can be used for various monetary compensations depending on
which public good is chosen.

The well-known analysis of strategy-proof allocation of a discrete public
good and money in e.g. Clark (1971), Groves (1973), Green and La¤ont
(1979), leads to a complete characterization of possible allocation mecha-
nisms. Here we will make an assumption not made in those studies; we will
assume the voting rule to be nonbossy. On the other hand, there will be no
problems with budget balance in our model.

The …ndings in this study show that the introduction of the nonbossiness
condition – no individual can a¤ect the outcome of the voting procedure
without a¤ect the outcome for himself – implies that only a …nite number of
income (money) distributions are compatible with strategy-proofness. The

1In the many individual case Barberá and Peleg have more complicated arguments than
those we use in our induction proof, but on the other hand they also prove the theorem
under more general assumptions, e.g. the number of alternatives may be in…nite.
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result is then that a ”mechanism designer” is bound to select a ”dictator” and
in addition, for each possible public good, determine an income distribution.
The distribution has to be independent of individual preferences but may
depend on the public good. If there is some kind of statistical information on
e.g. the distribution of preferences among the individuals, this information
can be used to select the various income distributions. So the dictatorial
result from the original voting model remains, but the presence of a divisible
good can to a limited extent be used to make compensations for di¤erences
in individual preferences, e.g. in order to maximize the expected value of a
social welfare function.

The paper is organized as follows. The original voting model is presented
in Section 2, some useful lemmas are given in Section 3, while the two indi-
vidual case and the many individual case where neutrality is assumed, are
to be …nd in Section 4. In Section 5 the purely public good model is ex-
tended to the model with a private divisible good (money), and the class of
strategy-proof voting rules (or allocation mechanisms) is derived. Finally, in
the Appendix an induction proof for the many individual case in the purely
public good case is given. In addition, the proof in the two individual case
along the lines in Barberá and Peleg (1990) are given there.

2 The voting model
The original voting model is well-known so we will only give a short de-
scription of the basic elements. Let N = f1; 2; : : : : ; ng be a …nite set of
individuals and let A = fa1; a2; : : : : amg be a …nite set of social alternatives.
The elements in A are public goods and called the objects. Preferences over
A are rankings of the various objects (i.e. complete, transitive, asymmetric
binary relations2). The set of all possible rankings of A represented by utility
functions is denoted U; so for a; b 2 A with a 6= b and u 2 U; u(a) > u(b)
or u(b) > u(a), but not both. Preference pro…les are elements in U = Un: A
preference pro…le u = (u1; u2; : : : un) can also be denoted (ui; u¡i) for i 2 N:

A voting rule is a mapping f from in U to A:3 A voting rule f is manip-
ulable precisely when there is an individual i 2 N; preferences u0i 2 U , and a
preference pro…le u 2 U ; such that ui(f(u0i; u¡i)) > ui(f(u)): If a voting rule
is not manipulable, it is strategy-proof. A voting rule f is dictatorial if there

2An alternative here is to assume that the individual preferences are complete and
transitive binary relations, and hence allow for indi¤erences. Our more narrow class of
preferences is, however, motivated by the desire to get short and simple proofs.

3An alternative name of a voting rule is allocation mechanism, in paticular when private
goods are also present.
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is an individual i 2 N (the dictator) such that ui(f(u)) ¸ ui(a) for all a 2 A
and for all u 2 U :

Let ¼ be a permutation ofA - a change of names of the objects4. If u 2 U is
a preference pro…le, a preference pro…le ¼u is de…ned as (¼u)i(a) = ui(¼¡1(a))
for i 2 N and a 2 A: A voting rule f is neutral if, for all preference pro…les
u 2 U , f(¼u) = ¼f(u): This means that the outcome of a neutral voting rule
is independent of the names of the objects.

Finally, a voting rule f is onto if for each a 2 A there is a preference
pro…le u 2 U such that f(u) = a: Obviously, a neutral voting rule is always
onto.

The main theorem of this paper is:

The Gibbard-Satterthwaite theorem: A strategy-proof voting rule that
is onto is dictatorial if the number of objects is at least three.

3 Some useful lemmas
For the proof of the main theorem two useful and simple lemmas will be
employed. The …rst one is a monotonicity lemma. It is a result that has
been used in various forms before, but the proof is simple and we repeat
it for completeness. The lemma says that a strategy-proof voting rule is
constant for all changes of reported preferences such that alternatives worse
than the outcome object (a) before the change are also worse than a after
the change. More exactly:

Lemma 1 (monotonicity) Let f be a strategy-proof voting rule, u 2 U a
preference pro…le, and f(u) = a: Then f(v) = a for all preference pro…les
v 2 U such that for all x 2 A and i 2 N;

vi(a) ¸ vi(x) if ui(a) ¸ ui(x):

Proof. Suppose …rst that vi = ui if i > 1: Let f(v1; u¡1) = b: From strategy-
proofness follows that u1(b) · u1(a); and hence from the assumption of the
lemma, v1(b) · v1(a): Strategy-proofness also implies that v1(b) ¸ v1(a) and
then, because preferences are strict, a = b: The lemma now follows after
repeating the arguments above while changing the preferences for only i = 2;
and then for only i = 3; and so forth.

The second lemma says that the outcome of a strategy-proof and onto voting
rule must be (weakly) Pareto optimal.

4Strictly speaking, ¼ is a permutation of the set f1; 2; : : :mg of indices of the elements
in A. However, for aj 2 A we will write ¼(aj) instead of a¼(j):
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Lemma 2 (Pareto optimality) Let f be a strategy-proof voting rule that is
onto. If u 2 U is a preference pro…le and a; b 2 A; a 6= b; two alternatives
such that ui(a) > ui(b) for all i 2 N; then f(u) 6= b:

Proof. Suppose that f(u) = b: Since f is onto there is a preference pro…le
v 2 U such that f(v) = a: Let also u0 2 U be a preference pro…le such that
for all i 2 N;

u0i(a) > u
0
i(b) > u

0
i(x) and u0i(x) = ui(x) for x 2 A¡ fa; bg :

By monotonicity (Lemma 1) it now follows that b = f(u) = f(u0) and a =
f(v) = f(u0); which is a contradiction. Hence f(u) 6= b:

4 The proof of the theorem under simplifying
assumptions

4.1 n = 2
First assume that the number of individuals is two. The following example
illustrates the idea in the proof of the theorem in that case.

Example. Consider a situation with two individuals and three alternatives,
a; b; c. To prove the theorem we …rst want to identify a dictator. Therefore
consider a preference pro…le where both individuals consider the objects a
and b to be better than c; but they have di¤erent highest ranked object. The
preferences are illustrated in the matrix u below where individual i’s ranking
is given in column i, i = 1; 2.

A Pareto consistent voting rule cannot select the object c (Lemma 2).
Assume that the outcome (bold) of the voting rule is a when the preference
pro…le is u: Then consider the preference pro…le v below:

u =

0
@

a b
b a
c c

1
A v =

0
@

a b
b c
c a

1
A

The outcome in this case must also be a: The reason is that the outcome
must be a or b by Pareto consistency but it cannot be b because of strategy-
proofness. But given a preference pro…le where the outcome (a) is the best
alternative for one individual and the worst object for the other individual,
it follows from monotonicity (Lemma 1) that the outcome of the voting rule
is always a when the …rst individual reports a to be his best object. He
becomes the dictator for this object.
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In the formal proof below we show that each object has a dictator and
then it must, of course, be the same individual for all objects.

Theorem 1 A strategy-proof voting rule f that is onto is dictatorial if the
number of objects is at least three and the number of individuals is two.

Proof. Let u 2 U2 be a preference pro…le and a; b 2 A two objects with
a 6= b such that

u1(a) > u1(b) > u1(x) and u2(b) > u2(a) > u2(x)

for all x 2 A¡ fa; bg : Then f(u) = a or b by Pareto optimality (Lemma 2).
Suppose that f(u) = a:

Now let preferences v2 2 U satisfy

v2(b) > v2(x) > v2(a)

for all x 2 A¡ fa; bg : Then f(u1; v2) = a or b by Pareto optimality (Lemma
2) and f(u1; v2) 6= b by strategy-proofness. Hence f(u1; v2) = a:

Monotonicity (Lemma 1) now implies that f(u0) = a for all u0 2 U2 such
that a is the best object according to preferences u01:

By repeating the analysis above for all pairs of objects from A we receive
two sets Ai ½ A; i = 1; 2; where Ai contains those objects x such that the
outcome of f is always x if individual i reports x to be his best object.

Let A3 = A¡ (A1 [A2). From the construction of A1 and A2 follows that
#A3 · 1: Since the voting rule is a function and m ¸ 3; one of the sets A1

and A2 must be empty. We have assumed that a 2 A1 so A2 = ?: Finally
A3 = ?; because if c 2 A3; let u 2 U2 be a preference pro…le such that

u1(c) > u1(a) > u1(x) and u2(a) > u2(c) > u2(x)

for all x 2 A¡ fa; cg : By the arguments above, c 2 A1 or a 2 A2; which is a
contradiction. Hence A1 = A and i = 1 is a dictator.

If we had assumed that a 2 A2 at the beginning of the proof then indi-
vidual 2 had become a dictator.

4.2 A neutral voting rule and m ¸ n:
In the appendix we provide a short induction proof of the theorem in the
general case with an arbitrary but …nite number of individuals. To get a
simple and direct proof of the theorem without induction based on the two
individual case, we will here make two additional and simplifying assump-
tions. The …rst one is to assume that there are at least as many objects as
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there are individuals, i.e. m ¸ n: Second we will assume neutrality, i.e. that
the outcome of the voting rule is independent of the names of the objects.
We may note that a neutral voting rule trivially is also onto, so Lemma 2 is
still valid.5

To illustrate the simple idea in the proof - which is a generalization of
the idea in the proof of Theorem 1 - consider the following example.

Example. There are four individuals and …ve objects, a; b; c; d; e. The main
step in the proof is to identify one individual and one object such that if the
individual reports that particular object to be his best object the object will
also be the outcome of the voting rule. Then, by neutrality, that individual
will be a dictator.

Therefore consider a preference pro…le where the various individuals have
permuted rankings of four object a; b; c; d; but all consider e to be the worst
object. The preferences are illustrated in the matrix u below. Here the
ranking of individual i is given in column i; i = 1; 2; 3; 4:

u =

0
BBBB@

a b c d
b c d a
c d a b
d a b c
e e e e

1
CCCCA

A Pareto consistent voting rule cannot select the object e (Lemma 2). As-
sume that the outcome (bold) of the voting rule is a when the preference
pro…le is u: Then consider the preference pro…le u1 below:

u1 =

0
BBBB@

a d d d
d a a a
b b b b
c c c c
e e e e

1
CCCCA

All objects in the pro…le u1 ranked higher than a are also ranked higher than
a in the pro…le u. Then by monotonicity (Lemma 1), the outcome of the
voting rule in this case must also be a. Next consider the preference pro…les

5We may also note that the preceding proof of the theorem presupposes that there
are at least three alternatives (m ¸ 3). However, by assuming neutrality that particular
requirement is super‡uous.
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u2; u3 and u4 below.

u2 =

0
BBBB@

a d d d
d b a a
b c b b
c e c c
e a e e

1
CCCCA
; u3 =

0
BBBB@

a d d d
d b b a
b c c b
c e e c
e a a e

1
CCCCA
; u4 =

0
BBBB@

a d d d
d b b b
b c c c
c e e e
e a a a

1
CCCCA
:

By Pareto consistency the outcome of the voting rule given the preference
pro…le u2 cannot be b; c or e because they are dominated by the object d.
Moreover, strategy-proofness excludes d to be the outcome and hence a is
still the outcome. The same arguments show that a must be the outcome
given the pro…les u3 and u4. But now follows immediately from monotonicity
(Lemma 1) that the outcome of the voting rule is a as soon as individual 1
reports a to be his best object. Finally, neutrality shows that individual 1 is
a dictator.

In the theorem below these ideas are formalized.

Theorem 2 A strategy-proof voting rule f that is neutral is dictatorial if
the number of objects is at least three and at least as many as there are
individuals, m ¸ n:

Proof. Let u 2 U be de…ned as

ui(aj) = n+ i¡ j if i · j · n;
ui(aj) = i¡ j if j < i;
ui(aj) = n¡ j if j > n:

This means that the various individual rankings of the n …rst objects are
permuted. Those objects are also ranked before objects with label j > n:
By Pareto consistency (Lemma 2), f(u) = aj for some j · n: Assume that
j = 1: Let u0 2 U be de…ned as

u01(a1) = n+ 2 and u01(an) = n+ 1;
u0i(an) = n+ 2 and u0i(a1) = n+ 1 for i > 1;
u0i(aj) = ui(aj) for j 6= 1 and j 6= n:

Hence all individuals consider the objects a1 and an to be better than the
other objects. Also note that the ranking of a1 and an is the same in the
pro…les u and u0; and in u0,the objects a1 and an are both ranked before the
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other objects. Hence by monotonicity (Lemma 1), f(u0) = f(u) = a1: Finally
de…ne pro…les uk 2 U , k = 1; 2; 3; : : : n¡ 1 recursively according to

u1 = u0;
uk+1
i = uki for i 6= k + 1;

uk+1
k+1(x) = ukk+1(x) for x 2 A¡ fa1g ;
uk+1
k+1(a1) = ¡m:

By Pareto consistency f(uk) = a1 or f(uk) = an: But strategy-proofness
implies that f(uk+1) = f(uk) and hence f(un) = a1: In the utility pro…le un;
a1 is the best object for individual 1, while it is the worst object for all other
individuals. Monotonicity (Lemma 1) then implies that f(u) = a1 as soon as
individual 1 reports a1 to be his best object. Then by neutrality, individual
1 becomes a dictator.

5 The voting model with monetary compen-
sations

Now assume that in addition to the public goods in A there is a divisible
good called money to be distributed. A certain positive quantity e 2 R+ is
available. Consumption bundles are now (a; xi) 2 A£R+: Let D = fx 2 Rn+
such that §ixi = eg be the set of feasible income distributions and A £ D
the set of feasible allocations.

Preferences over consumption bundles are represented by quasi-linear
utility functions ui(a) + xi; ui 2 U and pro…les are as before, u 2 U : A
voting rule f is now a mapping from U to the set of feasible allocations, i.e.
f(u) = (a; x) 2 A£ D: The notation fi(u) = (a; xi); i 2 N; is also used.

In this case we call a voting rule object onto if every public good is attain-
able, i.e. for each a 2 A there is a pro…le u 2 U such that f(u) = (a; x) for
some feasible income distribution x: Note, however, that we do not require
that every income distribution is attainable.

A voting rule f is manipulable if there is a pro…le u 2 U ; an individual
i 2 N and preferences vi 2 U such that if f(u) = (a; x) and f(vi; u¡i) = (b; y)
then vi(b)+yi > ui(a)+xi: If the voting rule is not manipulable, it is strategy-
proof.

In this case we de…ne a voting rule f to be dictatorial if there is an
individual i 2 N (the dictator) such that the outcome of the voting rule
always maximizes the utility of the dictator among possible outcomes of the
voting rule. Hence a dictator has now a weaker position than in the case
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with only public goods, because not all income distributions are necessarily
attainable. Formally, i 2 N is a dictator if

ui(a) + xi ¸ ui(b) + yi

for all (a; x); (b; y) 2 A £ D such that f(u) = (a; x) and f(v) = (b; y) for
some u; v 2 U :

A voting rule f is nonbossy6 if for all preferences vi 2 U and pro…les u 2 U ;
f(vi; u¡i) = f(u) when fi(vi; u¡i) = fi(u): A consequence of nonbossiness is
that if a particular object has been chosen, no individual can change the
distribution of money by changing his preferences unless his own money
holding is a¤ected. This is not the case in e.g. the Clark - Groves mechanism,
where an individual may a¤ect other individuals’ bundles by changing his
preferences without a¤ecting the own allotted bundle.

The theorem of this section is the following7:

Theorem 3 Let f be a nonbossy voting rule that is object onto. Then f is
strategy-proof if and only if there is a dictator i and a distribution function
¿ : A! D such that f(u) = (a; ¿(a)); where ui(a) + ¿ i(a) ¸ ui(b) + ¿ i(b) for
all b 2 A:

To prove the theorem, a monotonicity lemma will be used.

Lemma 3 (Monotonicity) Let f be a SPNB voting rule. Then, for any
pro…le u 2 U , any i 2 N and any utility function vi 2 U; f(vi; u¡i) = f(u) if
vi(a) ¡ vi(b) > ui(a) ¡ ui(b) for all b 2 A¡ fag; where f(u) = (a; x):

Proof. Let u 2 U , i 2 N and vi 2 U satisfy the presumptions in the lemma
and suppose that f(vi; u¡i) = (b; y). Then by strategy-proofness,

ui(a) + xi ¸ ui(b) + yi;
vi(b) + yi ¸ vi(a) + xi;

and hence,
vi(a) ¡ vi(b) · yi ¡ xi · ui(a) ¡ ui(b):

But vi(a) ¡ vi(b) > ui(a) ¡ ui(b) if b 6= a; so b = a must be the case, and
hence, xi = yi: Then by nonbossiness, f(vi; u¡i) = f(u):

6The concept of nonbossiness is due to Satterthwaite and Sonnenschein (1981).
7For similar result with private indivisible goods, see Ohseto (1999), Schummer (2000)

or Svensson and Larsson (2000).
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Proof of Theorem 3: First it is obvious that f is strategy-proof if there is a
distribution function ¿ and a dictator. Now assume that f is strategy-proof
and we show the existence of a distribution function ¿ and a dictator. Let
u; v 2 U , with f(u) = (a; x) and f(v) = (a; y): We …rst prove that x = y:
De…ne a pro…le w 2 U by

wi(a) = max[ui(a); vi(a)] + 1;
wi(c) = min[ui(c); vi(c)] ¡ 1 for c 2 A¡ fag:

Then

wi(a) ¡ wi(c) = 2 +max[ui(a); vi(a)] + max[¡ui(c);¡vi(c)] >
> max[(ui(a) ¡ ui(c)); (vi(a) ¡ vi(c))] for all c 2 A¡ fag:

By Lemma 3 and nonbossiness, f(w) = f(u) and f(w) = f(v): Hence x = y:
This means that there is a well de…ned function ¿ : A ! D such that if
f(u) = (a; x) then x = ¿ (a):

But now it follows from the Gibbard-Satterthwaithe theorem that f is
dictarorial.

Remark. Note that the analysis above is valid only for those preference
pro…les u 2 U where there are no indi¤erences, i.e. ui(a)+¿ i(a) 6= ui(b)+¿ i(b)
if a 6= b: So our result is true for ”almost all” pro…les u 2 U :

6 Appendix
The following is an alternative proof of Theorem 1. The proof is almost the
same as the one in Barberá and Peleg (1990). It is a simple proof but a
rather di¤erent type of arguments are used here compared to the …rst proof
of Theorem 1.

For given preferences u1 2 U; let
®(u1) = fa 2 A; a = f(u1; u2) for some preferences u2 2 Ug ;

i.e. ®(u1) is the range of f for …xed preferences u1: Obviously the set ®(u1)
is the choice set of individual 2 when the preferences of individual 1 are u1:
When individual 2 has reported his preferences u2; a strategy-proof voting
rule f requires that the outcome is the best object in ®(u1) according to u2:

The set ®(u1) will play a central role in the proof of the theorem. The
basic idea is to prove that ®(u1) contains exactly one object for all prefer-
ences u1 implying that individual 1 is a dictator, or that ®(u1) = A for all
preferences u2 implying that individual 2 is a dictator. The properties of
®(u1) are revealed by a number of small lemmas.
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Lemma 4 If a is the best object in A according to u1 2 U; then a 2 ®(u1):
Proof. Follows directly from Pareto optimality (Lemma 2).

Lemma 5 If a is the best object in A according to u1 2 U as well as to
u01 2 U; then ®(u1) = ®(u01):
Proof. Suppose that b 2 ®(u1) but b =2 ®(u01): Let u2 2 U be such that
u2(b) > u2(a) > u2(x) for all x 2 A ¡ fa; bg : By Lemma 4, a 2 ®(u01) so
f(u01; u2) = a: But f(u1; u2) = b; so f is manipulable - a contradiction. Hence
®(u1) ½ ®(u01) and hence by a symmetry argument, ®(u1) = ®(u01):

Lemma 6 If a is the best and w the worst object in ®(u1) according to
preferences u1 2 U; then b 2 ®(u1) if u1(a) > u1(b) > u1(w):

Proof. Suppose that b =2 ®(u1): Let u01 2 U be such that b 2 ®(u01): Such
preferences exists since f is onto. Now let u2 2 U be preferences such that
u2(b) > u2(w) > u2(x) for all x 2 A¡fw; bg : But then by strategy-proofness,
f(u1; u2) = w and f(u01; u2) = b; so f is manipulable - a contradiction.

Lemma 7 If #®(u1) > 1 for some preferences u1 2 U; then ®(u1) = A:
Proof. Let a be the best and w the worst object in ®(u1) according to u1:
Suppose that there is an object b 2 A¡®(u1): Let u01 2 U be preferences such
that u01(a) > u01(b) > u01(w) and such that a is the best object in A according
to u01: Then by Lemma 5, ®(u1) = ®(u01): But by Lemma 6, b 2 ®(u01) and
hence b 2 ®(u1): This is a contradiction, so ®(u1) = A:

Lemma 8 If #®(u01) > 1 for some preferences u01 2 U; then ®(u1) = A for
all preferences u1 2 U .

Proof. We note …rst that ®(u01) = A by Lemma 7. Suppose that there are
preferences u001 2 U such that ®(u001) = fag, i.e. contains just one object.
Let w be the worst object in ®(u01); i.e. in A; according to preferences u01:
By Lemma 5 we can assume that a 6= w without loss of generality. Also let
u2 2 U be preferences such that u2(w) > u2(a) > u2(x) for all x 2 A¡fa;wg :
Then f(u01; u2) = w and f(u001; u2) = a; and hence f is manipulable - a
contradiction.

The alternative proof of Theorem 1: If #®(u1) = 1 for all preferences
u1 2 U then by Lemma 4 individual 1 is a dictator, and if #®(u1) > 1 for
some preferences u1 2 U then by Lemma 8, ®(u1) = A for all preferences,
and hence individual 2 is a dictator.

Now let the number of individuals be any …nite number. The main theorem
then follows from an induction argument.
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Theorem 4 A strategy-proof voting rule f that is onto is dictatorial if the
number of objects is at least three.

Proof. Assume that the theorem is true for p individuals, p < n. We shall
prove that it is also true for p+ 1 individuals. Since the theorem is true for
p = 2 by Theorem 1, it then follows by induction that the theorem is true
for n:

Let g be a voting rule with two individuals de…ned as

g(u1; v) = f(u1; v : : : v):

The voting rule g is onto by Pareto optimality (Lemma 2) since f is onto.
The voting rule g is also strategy-proof. Because if it is not, there are pro…les
(u1; v) and (u1; v0) in U2; and objects a; b 2 A such that g(u1; v) = a and
g(u1; v0) = b and v(b) > v(a): Let uk = (u1; v0; : : : v0; v; : : : v) 2 Up+1 contain
k v0:s and p ¡ k v:s, 0 · k · p: Also let ak = f(uk): The voting rule f is
manipulable if v(ak+1) > v(ak) for some k < p: But that must be the case
because v(ap) = v(b) > v(a) = v(a0): Hence we have a contradiction and the
voting rule g must be strategy-proof. By Theorem 1, it is then dictatorial.

First, if i = 1 is the dictator for g then by Lemma 1 he is also dictator
for f:

Second, if i = 2 is the dictator for g, let u¤1 2 U be …xed preferences and
consider the voting rule

h(u2 : : : up+1) = f(u¤1; u2 : : : up+1)

with p individuals. The voting rule h is strategy-proof, and it is onto because
i = 2 is a dictator for g. Then, by the induction assumption, h is dictatorial.
Suppose that i = 2 is the dictator for h and consider the voting rule

q(u1; u2) = f(u1; u2; u¤3 : : : u
¤
p+1)

for arbitrarily …xed preferences u¤i 2 U; i ¸ 3: The voting rule q is strategy-
proof and onto, and hence dictatorial. But i = 1 cannot be the dictator so it
must be i = 2: Since u¤i 2 U was arbitrarily chosen i = 2 is the dictator for
f for all preference pro…les in Up+1:
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