
Project Milestone #2
John Dickerson (jpdicker@cs.cmu.edu)
15-780: Graduate Artificial Intelligence

April 19, 2011

“Scaling Today’s SAT Solver” Proposal Recap

I am interested in combining and parallelizing multiple search techniques. For my class project, I am combining
portfolio-based DPLL SAT solving with Hyperresolution. Specifically, I am building on top of a system started by
Erik Zawadzki and myself; I am incorporating our highly parallel DPLL+Resolution code into the relatively untried
portfolio-based parallel solver called ManySAT [7], which in turn is built on the highly successful, vested, and quite
fast, MiniSAT v2.2 [5].

Progress Toward Original Project Plan

I provide the following plan, with 75%, 100%, and 125% cutoffs corresponding to how much I will have done by
the May poster session given an overestimation, correct estimation, or underestimation of the amount of work this
project will require.

75% Plan

1. Become familiar with the ManySAT system and parallel SAT solving literature.

Regarding the ManySAT code, I actually hit a major roadblock until quite recently; specifically, the ManySAT
folks removed their source code before and during the SAT-2011 (Theory and Applications of Satisfiability
Testing) submission period. Their new code only popped up within the last week. On the plus side, the
newest ManySAT code base is extremely similar to the most recent MiniSAT project with which I am inti-
mately familiar. The major additions are some hooks into the actual base solver code (to define a portfolio
of four slightly different DPLL-based solvers, as well as to permit basic message passing capabilities), and
then a new file that controls some of the communication between each independent DPLL run (presumably
on independent cores or CPUs). The ManySAT solver did not touch the packaged SatElite—produced by the
authors of MiniSAT—preprocessor, so I am still aware of its capabilities and code base.

On the parallel SAT literature side, I am confident in my knowledge of state-of-the-art parallel SAT solving.
The big players are still SATzilla-type [8] solvers in the portfolio-based realm, and ManySAT in the parallel
realm. MiniSAT is still an extremely strong contender in serial SAT solving, so ManySAT’s core remains a safe
foundation upon which to build a highly parallelized SAT solver.

Regarding combining different SAT solving techniques a la DPLL and Hyperresolution, the field remains
relatively unexplored. Most recent literature involving non-DPLL techniques in SAT fall into one of two cat-
egories: preprocessing or theory.

Preprocessing. With preprocessing, Bacchus experiments with using both binary resolution and limited
hyperresolution to cull redundant clauses before instituting the standard DPLL search [2]. Other sim-
ilar examples exist [3]. One key piece of information I took away from this literature search is that
people have avoided (hyper)resolution because of its incredibly high computational cost. Although
theoretically more powerful, when push comes to shove standard—and highly studied, hacked, and

1



implemented—DPLL tends to beat other methods. This bodes well for our goal of offloading the hard
Hyperresolution work to non-critical cores in the hopes of extracting valuable information to guide the
fast, relatively uninformed DPLL search.

Theory. There is a wide body of literature studying the computational power of various search and proving
techniques. For example, within the last decade it was shown that there exists a non-trivial separa-
tion between regular and general resolution techniques [1]. Similar results exist between various types
of resolution and standard DPLL (see, for example, [6]). Recent purely theoretical results have shown
some of the promise of augmenting DPLL with “simple” improvements that increase the power of stan-
dard DPLL exponentially [4]. Again, this bodes well for our approach; however, none of the recent
results have been implemented, and all were discussed in a purely serial format.

2. Hook the ManySAT codebase into my current parallel solver; ensure that it runs with ManySAT’s DPLL solver
running in single-threaded mode.

As described above, I was only able to get my hands on the ManySAT codebase this week. Before this time, I
spent most of my time getting the code base written by myself and Erik Zawadzki working (correctly) on the
world’s largest shared memory supercomputer1. Still, since receiving—and learning—the ManySAT code,
I have begun merging the pure DPLL+Resolution code into the ManySAT framework. I do not foresee this
process taking much longer than another week, at least to obtain a single-threaded, correct combined solver.

3. Get ManySAT working with multiple DPLL searches in conjunction with my parallel solver.

Moving the ManySAT+Resolution code over to a highly parallel system will involve at least two major hurdles.
First, the code I have for DPLL+Resolution is written with a different threading structure and set of threading
libraries than ManySAT (Intel TBB2 vs. pthreads). Intel TBB, on which the DPLL+Resolution code is currently
built, provides a number of threadsafe STL-like data structures—specifically queues and hash maps—that
are currently used by the Hyperresolution nodes. Thankfully, the base threading (launching, managing, join-
ing, et cetera) is quite similar to pthreads. Hopefully, it will not be too much of an issue to get the ManySAT
code to compile and correctly run with the TBB libraries.

The second hurdle will be in getting the ManySAT suite to run on a supercomputer. Currently, ManySAT has
only been tested on one multicore CPU, with either four or eight cores3. The supercomputer I am testing
on is ideal for this situation in that is a shared memory machine—theoretically, in the eyes of the solver, the
memory is one giant addressable space and each core can communicate with each other core. Still, problems
will arise. Along these lines, setting up a testing suite on the supercomputer will be a bit of a hassle.

4. Explore the tradeoffs between allocating more ManySAT cores versus more Hyperresolution cores. How does
this affect the node count of the final search tree(s) versus the speed of the actual solver? Is there some obvious
balance?

A response to these questions will arise once the ManySAT code is hooked into our DPLL+Hyperresolution
framework, and a reasonable testing suite has been built on our resident supercomputer.

100% Plan

5. Create and intensively test heuristic methods for determining the level of communication between ManySAT-
to-ManySAT cores, ManySAT-to-Hyperresolution, and Hyperresolution-to-Hyperresolution cores.

While I have not had the opportunity to test my DPLL+Resolution solver alongside the ManySAT solver, I
have been able to perform extremely preliminary tests of the Hyperresolution-to-Hyperresolution form. Bar-
ring some initial technical difficulties (hardware outages and code bugs), performance on a purely Hyperresolution-
to-Hyperresolution is still fairly poor. I believe—and some rudimentary analytics seem to confirm—that the
problem falls into two camps.

1http://www.psc.edu/machines/sgi/uv/blacklight.php
2http://threadingbuildingblocks.org/
3This is also how the current SAT competitions run their parallel solver tracks.

2



• Extreme communication overhead (how many resolved clauses do I send, to whom do I send them,
how frequently should I initiate contact, how frequently should I accept others’ clauses, et cetera?)
These are the kind of problems that the Master-Slave paradigm provided by the ManySAT framework
will hopefully help to alleviate. Still, significant experimentation will be required to determine a good
adaptive strategy to handling the communication overhead problem.

• Timely clause production. I’ve found that, given a wholly unguided hyperresolution process, many
of the clauses produced by my Hyperresolution nodes do not “fit in” to the current DPLL tree search.
State-of-the-art DPLL takes temporal and spatial locality into account in the way it learns (and forgets)
clauses; as such, when one of my Hyperresolution nodes returns a new clause—however strong it might
be—it is often not fully realized by the DPLL search. This is due to the fact that, since the tree search
fed the Hyperresolution node’s database the resolvant’s parents, it has potentially restarted or other-
wise moved into a completely different part of the search space. Again, hopefully ManySAT’s notion of
"clause goodness" will help alleviate this problem.

125% Plan

I have not gotten to any of the goals in the 125% plan yet. Thankfully, none of my preliminary results invalidate
these optimistic goals’ directions, so I still plan to pursue (and hopefully publish) them.

References

[1] M. Alekhnovich, J. Johannsen, T. Pitassi, and A. Urquhart, An exponential separation between regular and gen-
eral resolution, Proceedings of the thiry-fourth annual ACM symposium on Theory of computing, ACM, 2002,
pp. 448–456.

[2] F. Bacchus, Exploring the computational tradeoff of more reasoning and less searching, Proceedings of the Fifth
International Conference on Theory and Applications of Satisfiability Testing (SATâĂŹ02), Citeseer, 2002, pp. 7–
16.

[3] F. Bacchus and J. Winter, Effective preprocessing with hyper-resolution and equality reduction, Theory and Ap-
plications of Satisfiability Testing, Springer, 2004, pp. 321–322.

[4] P. Beame, R. Impagliazzo, T. Pitassi, and N. Segerlind, Formula caching in DPLL, ACM Transactions on Compu-
tation Theory (TOCT) 1 (2010), no. 3, 1–33.

[5] N. Eén and N. Sörensson, An extensible SAT-solver, Theory and Applications of Satisfiability Testing, Springer,
2004, pp. 333–336.

[6] A. Haken, The intractability of resolution, Theoretical Computer Science 39 (1985), 297–308.

[7] Y. Hamadi, S. Jabbour, and L. Sais, ManySAT: a parallel SAT solver, Journal on Satisfiability, Boolean Modeling
and Computation 6 (2009), 245–262.

[8] L. Xu, F. Hutter, H.H. Hoos, and K. Leyton-Brown, SATzilla: portfolio-based algorithm selection for SAT, Journal
of Artificial Intelligence Research 32 (2008), no. 1, 565–606.

3


