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Theorem 1. Let there be a CSP with |D| = d and arity r (each constraint having at most r
variables). If it is strong (d(r — 1) + 1)-consistent, then it is globally consistent.

Proof. For simplicity we provide the proof for the special case of r = 2.

We will prove the theorem by showing that strong (d+ 1)-consistent binary CSPs are (d+i+1)-
consistent for any ¢ > 1.

According to the definitions, we need to show that if £ = (z1,...x44,) is any locally consistent
subtuple of the subset of variables {Xj, ..., X41;}, and if X4,,;11 is any additional variable, then
there is an assignment zg4;41 to Xgy;41 that is consistent with z.

We call an assignment to a single variable a unary assignment and we view Z as a set of such
unary assignments. With each value j € D we associate a subset A; that contains all unary
assignments in z that are consistent with the assignment Xy.;,; = j. Since variable X;4,41 may
take on d possible values 1,2, ...d this results in d such subsets, A1, ..., Aq4.

We claim that there must be at least one set, say Aj, that contains the set Z. If this were
not the case, each subset A; would be missing some member, say x}-, which means that the tuple
generated by taking a missing unary assignment from each of the A;’s , ie. @ = (2,25, ...,2))
whose length is d or less (there might be repetitions), could not possibly be consistent with any of
Xgrir1's values.

This leads to a contradiction because as a subset of Z, Z’ is locally consistent, and from the
assumption of strong (d + 1)-consistency, this tuple should be extensible by any additional variable
including Xgy;41.

Note that we need not assume that the z/’s are distinct unary assignments because strong
(d + 1)-consistency renders the argument applicable to subtuples Z’ of length less than d.

We found a subset, without loss of generality A;, that contains the set . From the definition
of Ay, it is consistent with X44,11 = 1. Hence, we found a value consistent with z. ]

Theorem 2. Let there be a CSP with arity r. Let t be an upper bound on the number of con-
straints each variable appears in. Let q be a lower bound on the probability of choosing a satisfying

assignment for a constraint. If g > 1 — m then there is a solution to the CSP.

Lemma 3 (Lovdsz Local Lemma). We denote by &1,E, ..., Ey the series of events such that each
event occurs with probability at most p and such that each event is independent of all the other
events except for at most m of them. If ep(m+1) <1 (where e = 2.718...), then there is a nonzero
probability that none of the events occur, Pr[i_, & > 0.

*Based on lecture notes by Zvi Vlodavsky and Bracha Hod.



Proof of Theorem 2. Let there be a random assignment of variables. &; is the event of C; not being
satisfied. Since a constraint has at least a g probability of being satisfied, Pr[&;] < 1 — ¢. Since
a constraint has at most r variables, each appearing in at most (¢ — 1) other constraints, & is
independent of all other events except for at most r(t — 1) events.

According to The Lovasz Local Lemma, by assigningp = 1—¢, m = r(t—1), ife(1—q)(r(t—1)+1) <
1 then Pr[N_, &] > 0. Hence, there is a solution to the CSP. O



