Proofs for Lecture 13

Ariel Procaccia*

Theorem 1. Let there be a CSP with |D| = d and arity r (each constraint having at most r variables). If it is strong (d(r-1)+1)-consistent, then it is globally consistent.

Proof. For simplicity we provide the proof for the special case of r=2.

We will prove the theorem by showing that strong (d+1)-consistent binary CSPs are (d+i+1)-consistent for any $i \geq 1$.

According to the definitions, we need to show that if $\bar{x} = (x_1, ... x_{d+i})$ is any locally consistent subtuple of the subset of variables $\{X_1, ..., X_{d+i}\}$, and if X_{d+i+1} is any additional variable, then there is an assignment x_{d+i+1} to X_{d+i+1} that is consistent with \bar{x} .

We call an assignment to a single variable a unary assignment and we view \bar{x} as a set of such unary assignments. With each value $j \in D$ we associate a subset A_j that contains all unary assignments in \bar{x} that are consistent with the assignment $X_{d+i+1} = j$. Since variable X_{d+i+1} may take on d possible values 1, 2, ...d this results in d such subsets, $A_1, ..., A_d$.

We claim that there must be at least one set, say A_1 , that contains the set \bar{x} . If this were not the case, each subset A_j would be missing some member, say x'_j , which means that the tuple generated by taking a missing unary assignment from each of the A_j 's, i.e. $\bar{x}' = (x'_1, x'_2, ..., x'_d)$ whose length is d or less (there might be repetitions), could not possibly be consistent with any of X_{d+i+1} 's values.

This leads to a contradiction because as a subset of \bar{x} , \bar{x}' is locally consistent, and from the assumption of strong (d+1)-consistency, this tuple should be extensible by any additional variable including X_{d+i+1} .

Note that we need not assume that the x_i' 's are distinct unary assignments because strong (d+1)-consistency renders the argument applicable to subtuples \bar{x}' of length less than d.

We found a subset, without loss of generality A_1 , that contains the set \bar{x} . From the definition of A_1 , it is consistent with $X_{d+i+1} = 1$. Hence, we found a value consistent with \bar{x} .

Theorem 2. Let there be a CSP with arity r. Let t be an upper bound on the number of constraints each variable appears in. Let q be a lower bound on the probability of choosing a satisfying assignment for a constraint. If $q \ge 1 - \frac{1}{e(r(t-1)+1)}$ then there is a solution to the CSP.

Lemma 3 (Lovász Local Lemma). We denote by $\mathcal{E}_1, \mathcal{E}_2, ..., \mathcal{E}_n$ the series of events such that each event occurs with probability at most p and such that each event is independent of all the other events except for at most m of them. If $ep(m+1) \leq 1$ (where e = 2.718...), then there is a nonzero probability that none of the events occur, $\Pr[\bigcap_{i=1}^n \bar{\mathcal{E}}_i] > 0$.

^{*}Based on lecture notes by Zvi Vlodavsky and Bracha Hod.

Proof of Theorem 2. Let there be a random assignment of variables. \mathcal{E}_i is the event of C_i not being satisfied. Since a constraint has at least a q probability of being satisfied, $\Pr[\mathcal{E}_i] \leq 1 - q$. Since a constraint has at most r variables, each appearing in at most (t-1) other constraints, \mathcal{E}_i is independent of all other events except for at most r(t-1) events.

According to The Lovász Local Lemma, by assigning $p=1-q, m=r(t-1), \text{ if } e(1-q)(r(t-1)+1) \leq 1 \text{ then } \Pr[\bigcap_{i=1}^n \bar{\mathcal{E}}_i] > 0.$ Hence, there is a solution to the CSP.