Computer Vision II

• Last time: Computer vision tasks as massive search problems

$$f(x) = y^* = argmax_{y \in \mathcal{Y}} g(x, y)$$

- Detection: $f: \mathcal{X} \to \mathcal{Y}$ \mathcal{Y} = all possible positions (and scales) of object
- Foreground/background segmentation: $f: \mathcal{X} \rightarrow \mathcal{Y}$ \mathcal{Y} = all possible 0/1 labelings of image $\{0,1\}^n$
- Labeling: $f: \mathcal{X} \to \mathcal{Y}$ \mathcal{Y} = all possible labelings of image $\{1, ..., L\}^n$
- Pose estimation: $f: \mathcal{X} \to \mathcal{Y} \quad \mathcal{Y} = \text{all possible poses}$ (u, v, θ, s) of image $\{1, \dots, P\}^K$

$$f(x) = y^* = argmax_{y \in \mathcal{Y}} g(x, y)$$

- Detection: $f: \mathcal{X} \to \mathcal{Y}$ \mathcal{Y} = all possible positions (and scales) of object $g(x, y) = w. \varphi(x, y)$
- Foreground/background segmentation: $f: \mathcal{X} \to \mathcal{Y} \quad \mathcal{Y}$ = all possible 0/1 labelings of image $\{0,1\}^n$
- Labeling: $f: \mathcal{X} \to \mathcal{Y} \quad \mathcal{Y}$ = all possible labelings of image $\{1, ..., L\}^n$
- Pose estimation: $f: \mathcal{X} \to \mathcal{Y} \quad \mathcal{Y} = \text{all possible poses } (u, v, \theta, s) \text{ of image } \{1, \dots, P\}^K$

Energy models:

$$g(x, y) = \sum_{i=1}^{n} g_i(x, y_i) + \sum_{i,j \in \mathcal{N}(i)} g_{i,j}(y_i, y_j, x)$$

Probabilistic models:

$$p(y|x) = \frac{1}{Z} \exp(g(x, y)) = \frac{1}{Z} \prod \psi_i(x, y_i) \prod_{i, j \text{ linked}} \psi_{ij}(y_i, y_j)$$

Reminder of key results

- Exact algorithms on tree-structured graphs
 - Message passing
 - Max-product: compute y*
 - Sum-product: estimate marginals $p(y_i|x)$
- Today:
 - Details of max/sum for tree-structured models
 - Detection with parts
 - Pose estimation
 - Efficient search for detection (in some special cases)
- Next:
 - Details of general cases for segmentation and labeling

Richer description is needed to capture the variation in appearance of typical visual classes

g(x, y) =

W

 $\varphi(x,y)$

Representation by parts:

 $y = y_1, \ldots, y_K$

Possible (bad) model: Find each part independently $y_i^* = \operatorname{argmax}_{y_i} g_i(x, y_i)$

Example from P. Felsenzwalb

Example from D. Ramanan

• For each individual part:

$$g_{ij}(y_i, y_j) = w_{ij} \cdot \varphi_{ij}(y_i, y_j)$$

Feature vector describing the location of y_i with respect to y_j

Unlikely

 W_1

$$g(x,y) = w_1^T \cdot \varphi_1(x,y_1) + w_2^T \cdot \varphi_2(x,y_2) + w_3^T \cdot \varphi_3(x,y_3) + w_{12} \cdot \varphi_{12}(x,y_{12}) + w_{13} \cdot \varphi(x,y_{13})$$

$$g(x,y) = w_1^T \varphi_1(x, y_1) + w_2^T \varphi_2(x, y_2) + w_3^T \varphi_3(x, y_3) + w_{12}^T \varphi_{12}(y_1, y_2) + w_{13}^T \varphi_{13}(y_2, y_3)$$
$$\max_y g(x, y) = \max_{y_1} \max_{y_2} \max_{y_3} \max_{y_3} \max_{y_1} \max_{y_2} \max_{y_3} \max_{y_3} \max_{y_3} \max_{y_1} \max_{y_2} \max_{y_3} \max$$

$$w_1^T \varphi_1(x, y_1) + w_2^T \varphi_2(x, y_2) + w_3^T \varphi_3(x, y_3) + w_{12}^T \varphi_{12}(y_1, y_2) + w_{13}^T \varphi_{13}(y_1, y_3)$$

Usual max sum trick: max(a+b, a+c) = a + max(b,c)

 $\max_{y_1}(w_1^T\varphi_1(x,y_1) + \max_{y_2}(w_2^T\varphi_2(x,y_2) + w_{12}^T\varphi_{12}(y_1,y_2)) + \max_{y_3}(w_3^T\varphi_3(x,y_3) + w_{13}^T\varphi_{13}(y_1,y_3)))$

General case

• Message passing (DP): score(y_j) $= w_j^T \varphi_j(x, y_j) + \sum_{\substack{k \text{ descendant}(j) \\ m_a(y_b) = \max_{y_a} \text{ score}(y_a) + w_{ab}^T \varphi_{ab}(y_a, y_b)} m_a(y_b)$

-	24	1	21	Ħ	3	25	2
15	5	17	**		4		7
u:	-	H	径	11			4
	- E-	-	1.2		÷-1.		- 1

12

Estimating the marginals

•
$$p(y|x) = \frac{1}{z} \exp(g(x, y)) =$$

 $\frac{1}{z} \prod \psi_i(x, y_i) \prod_{i,j \text{ linked}} \psi_{ij}(y_i, y_j)$

Estimating the marginals

Estimating the marginals

• Propagate partial sums from root $P(y_j, y_i | x) = P(y_j | y_i, x) P(y_i | x)$ $P(y_j | x) = \sum_{y_i} P(y_j, y_i | x)$

Example from Deva Ramanan

Parenthesis: Efficiency issues in search for a detection in an image

- Detection: $f: \mathcal{X} \to \mathcal{Y}$ \mathcal{Y} = all possible positions (and scales) of object $g(x, y) = w. \varphi(x, y)$
- Need to evaluate all possible boxes = all possible positions and sizes = N^4
- Is it possible to do this more efficiently?
- Yes, for some special cases

• if $\overline{g_k} < \underline{g_l}$ for all l then there is no point in exploring A_k

- Notes: ٠
 - Worst case complexity remains the same
 - Lower is trivial: Pick any a in A_k

Branch-and-bound for detection

- Each box parameterized by [T, B, L, R]•

Branch-and-bound for detection

Subwindow search

- Depth first search: split current set of windows A by splitting one of the intervals $[T_{min}, T_{max}], [B_{min}, B_{max}], [L_{min}, L_{max}], [R_{min}, R_{max}]$ in the middle
- Next question: How to evaluate $\overline{g(A)}$, g(A)

Additive scores

• We consider scores of the form:

$$g(x, y) = \sum_{x_i \text{ occurs in } y} w(x_i)$$

Example BoW:

- $h(x_i)$ = number of times word x_i occurs in box y
- $w(x_i) =$ entry of weight vector w for word x_i

$$g(x, y) = \sum_{x_i} w(x_i) h(x_i) = \sum_{x_i \text{ occurs in } y} w(x_i)$$

Branch-and-bound for detection

- If score is additive, then simple upper bound:
- $\bar{g}(x, y) = \sum_{x_i \text{ occurs in } y_{\cup}} \max(w(x_i), 0) + \sum_{x_i \text{ occurs in } y_{\cap}} \min(w(x_i), 0)$
- $\bar{g}(x, y) = \sum_{x_i \text{ occurs in } y_0} w(x_i)^+ + \sum_{x_i \text{ occurs in } y_0} w(x_i)^-$

Efficient sliding windows (ESS)

- Branch:
 - Depth first search: split current set of windows A by splitting one of the intervals

 $[T_{min}, T_{max}]$, $[B_{min}, B_{max}]$, $[L_{min}, L_{max}]$, $[R_{min}, R_{max}]$ in the middle

Bound:

 $\bar{g}(x,y)$

$$= \sum_{x_i \text{ occurs in } y_{\cup}} w(x_i)^+ + \sum_{x_i \text{ occurs in } y_{\cap}} w(x_i)^-$$

Efficient sliding windows (ESS)

- Branch:
 - Depth first search: split current set of windows A by splitting one of the intervals $[T_{min}, T_{max}], [B_{min}, B_{max}], [L_{min}, L_{max}], [R_{min}, R_{max}]$ in the middle
- Bound:

$$\bar{g}(x,y) = \sum_{x_i \text{ occurs in } y_{\cup}} w(x_i)^+ + \sum_{x_i \text{ occurs in } y_{\cap}} w(x_i)^-$$

- O(1) computation of bound
- Can be extended to non-linear operations on histogram representations: histogram intersection, χ^2 , pyramid kernels
- Later: BB idea can be applied to other problems, e.g., nontree inference

Reminder of key results

- Exact algorithms on tree-structured graphs
 - Message passing
 - Max-product: compute y*
 - Sum-product: estimate marginals $p(y_i|x)$
- Today:
 - Details of max/sum for tree-structured models
 - Detection with parts
 - Pose estimation
 - Efficient search for detection (in some special cases)
- Next:
 - Details of general cases for segmentation and labeling