Perception (Computer Vision) I

Basic problems

- Detection
- Segmentation
- Labeling
- Pose estimation
- 1. General formulation
- 1b. Popular image representations
- 2. Connection with earlier discussion on factor graphs
- 3. Other approaches

Basic problem

- Detection
- $f: \mathcal{X} \to \mathcal{Y}$ \mathcal{Y} = all possible positions (and scales) of object

Basic problem

- Foreground/background segmentation
- $f: \mathcal{X} \to \mathcal{Y}$ \mathcal{Y} = all possible 0/1 labelings of image $\{0,1\}^n$

Basic problem

- Labeling
- $f: \mathcal{X} \to \mathcal{Y}$ \mathcal{Y} = all possible labelings of image $\{1, \dots, L\}^n$

Basic problem

- Pose estimation
- $f: \mathcal{X} \to \mathcal{Y}$ \mathcal{Y} = all possible poses (u, v, θ, s) of image $\{1, \dots, P\}^K$

Basic problem

- Pose estimation
- $f: \mathcal{X} \to \mathcal{Y}$ \mathcal{Y} = all possible poses (u, v, θ, s) of image $\{1, \dots, P\}^K$

Yang and Ramanan. Articulated pose estimation with flexible mixtures-of-parts. CVPR. 2011. V. Ferrari, M. Marin-Jimenez, A. Zisserman: "Progressive Search Space Reduction for Human Pose Estimation", CVPR 2008

Basic problems

- Detection
- Segmentation
- Labeling
- Pose estimation
- Possible formalization (structured prediction):

$$f: \mathcal{X} \to \mathcal{Y}$$
$$g: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$$

$$f(x) = y^* = argmax_{y \in \mathcal{Y}} \ g(x,y)$$

Example: Linear classifier for detection $g(x,y) = w. \varphi(x,y)$

- Slight digression: A couple of popular features $\varphi(x,y)$ for vision problems
- Bags of words
- · Histograms of gradients

Example feature $\varphi(x, y)$: Bag of words (BoW)

Modeling Texton Distributions

Analogy with Text Analysis

Political observers say that the government of Zorgia does not control the political situation. The government

Analogy with Text Analysis

Classification: Nearest-neighbor

Example Classification (NN)

Classifier on BoW

Example feature $\varphi(x,y)$: Histogram of gradients Gradients in images capture the local variation of intensity = vector

- of derivatives of image in coordinates u and v
- Captures local "shape" and local "texture"

Histogram of Gradients: HoG

Feature vector

• $\varphi(x,y) \in \mathbb{R}^d \ d \approx 1000$

Classification $w.\varphi > 0$

N. Dalal and B. Triggs . Histograms of Oriented Gradients for Human Detection. CVPR, 2005

Other objects

Courtesy Santosh Divvalla 2012

Other objects

Example: Segmentation

$$g(x,y) = \sum_{i=1}^{n} g_i(x,y_i) + \sum_{i,j \in \mathcal{N}(i)} g_{i,j}(y_i,y_j)$$
$$f(x) = y^* = argmax_{y \in \{0,1\}^n} g(x,y)$$

 $g_{i,j}(y_i,y_j)$ large if $y_i=y_j$ $g_i(x,y_i)$ large if data x at i agrees with model y_i Example: Linear model $g_i(x,y_i)=w_{y_i}\cdot\varphi_i(x,y_i)$

Example: Segmentation

Example from Christoph Lampert

Example: Labeling

$$g(x,y) = \sum_{i=1}^{n} g_i(x,y_i) + \sum_{i,j \in \mathcal{N}(i)} g_{i,j}(y_i,y_j,x)$$
$$f(x) = y^* = argmax_{y \in \{1,\dots,L\}^n} g(x,y)$$

$$\begin{split} g_{i,j}(y_i,y_j,x) & \text{ large if } \quad y_i = y_j \text{ when data agrees at } i \text{ and } j \\ g_{ij}\big(y_i,y_j,x\big) &= w_{ij}.\, \varphi_{ij}(y_i,y_j,x) \\ g_i(x,y_i) & \text{ large if data } x \text{ at } i \text{ agrees with model } y_i \\ \text{Examples: Linear, Softmax } g_i(x,y_i) &= \frac{e^{w_{j_i}.\varphi_i(x,y_i)}}{\sum_i e^{w_{j_j}.\varphi_j(x,y_j)}} \end{split}$$

Example: Pose estimation

$$g(x,y) = \sum_{i=1}^{n} g_i(x,y_i) + \sum_{i,j \text{ linked}} g_{i,j}(y_i,y_j)$$

 $g_i(x, y_i) = w_i. \varphi_i(x, y_i) \varphi_i$ = HoG at y_i

 $g_{i,j}(y_i, y_j)$ = likelihood of relative positions y_i and y_j

Example: Pose estimation

V. Ferrari, M. Marin-Jimenez, A. Zisserman: "Progressive Search Space Reduction for Human Pose Estimation", CVPR 2008

Possible structured models: Factor graphs

$$g(x,y) = \sum_{i=1}^{n} g_i(x,y_i) + \sum_{i,j \text{ linked}} g_{i,j}(y_i,y_j)$$

$$g(x,y)$$

$$= \log(\exp(\sum_{i=1}^{n} g_i(x,y_i) + \sum_{i,j \text{ linked}} g_{i,j}(y_i,y_j)))$$

$$\exp(g(x,y)) = \prod \psi_i(x,y_i) \prod_{i,j \text{ linked}} \psi_{ij}(y_i,y_j)$$

Factor graphs

$$p(y|x) \propto \exp(g(x,y))$$

$$p(y|x) = \frac{1}{Z} \exp(g(x,y))$$

$$= \frac{1}{Z} \prod \psi_i(x,y_i) \prod_{i,j \text{ linked}} \psi_{ij}(y_i,y_j)$$

$$\psi_i \qquad \psi_j \qquad \text{Conditional random field}$$

Reminder of key results: Inference

Exact algorithm on tree-structured graphs

- Message passing
- Max-product: compute y^* $\sum_{x_j} f_{ij}(x_i, x_j) \prod_{N(j) \setminus i} m_{kj}(x_j)$
- Sum-product: estimate marginals $p(y_i|x)$
- · Approximate algorithms
 - Loopy BP
 - Sampling