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Reasoning with uncertainty IV

* Arbitrary connections between state and observation variables at any time ¢
1. Replicate over time (unroll) = General graph, can’t do exact inference directly (in general)
2. Collapse state variables wrt observed - K”state tables in general
* Inthe discrete case, DBN <=> HMM but note the complexity issue
* Alternative
— Sampling
— Variational, Assumed density
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Approximate inference
* In general: Cannot compute P(X,) or P(X,,..,X,)
directly
* Need to use approximation
— Sampling
— Define tractable simpler P’and find approximation

Sampling from distribution
* Given known distribution P(x) always possible to draw
samples from P(x)

* In general (e.g., non-tree models) P(x,.,x,) cannot be
represented explicitly = Cannot sample directly

* How to/why use samples:

— Use distribution to compute statistics, e.g.,
expectations

1
B () = [ FOOPG) =5 ) FGx)

x; must be independent and follow the distribution P!
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Sampling

* First (simple and silly) example on a couple of
Bayes nets

— Ancestral and likelihood sampling
* General techniques

— Rejection

— Importance

— MCMC

— Gibbs

— Sequential (particles)

Approximate Method: Sampling

¢ General idea:

— ltis often difficult to compute and represent exactly the probability
distribution of a set of variables

— But, it is often easy to generate examples from the distribution

For a large number of samples,

P(X;=X0,X5Xy, e, Xy = Xipy)

= TTFTFF..TF
TFEFTTTF...TT
FTTFEFE.TF # of samples with

X=X, and X,=x, ...and X, = X,

is approximately equal to:

FFFTFT..FT

Total # of samples




Sampling Example

* Generate a set of variable assignments with the same distribution
as the joint distribution represented by the network

P(C) =0.5
C|P(S = True) ©) C|P(R =True)
T| 0.10 @ T 080
F| 050 F| 020
S R |P(W =True)
TT 0.99 N
TF| o090 [— N7
FT| 090 @
FF 0.01
Sampling
C|S |IR|W 1. Randomly choose C. C=
T True with probability 0.5
- C=True
[re-0s ]
g P(S =True) @ C|P(R=True)
F| 050 F| 020
S R | P(W =True)
TT 0.99
TF 0.90
FT 0.90
FF 0.01
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Sampling
1.

C R |W Randomly choose C. C=
TIE True with probability 0.5
- C=True
- 2. Randomly choose S. S=
@ True with probability 0.10
CEET) GIEEETE] I S
0.50 0.20

S R | P(W =True)
TT 0.99
TF 0.90
FT 0.90
FF 0.01 @
Sampling
C|S R |W 1. Randomly choose C. C=
True with probability 0.5
T|F T - C=True
2. Randomly choose S. S=
- True with probability 0.10
—Tr c|PR=T
0 PE=Tue) B - S=False
0.50 0.20
3. Randomly choose R. R=
CSprinkler > (Rain ) True with probability 0.80
S R | P(W =True) 9 R=True
TT 0.99
TF 0.90
FT 0.90

FF 0.01




Sampling
1

C|S R |W Randomly choose C. C=
True with probability 0.5
T|F|T|T - C=True
2. Randomly choose S. S=
T 'I'eruse;/vllztaf?srérobabHNy 0.10
0.50 0.20
3. Randomly choose R. R=

- W =True

True with probability 0.80

S R | P(W =True) 9 R =True
TT 0.99
TF 0.90 4. Randomly choose W. W =

True with probability 0.90

Problem with Sampling

* Probability is so low for some assignments of variables that
that will likely never be seen in the samples (unless a very

large number of samples is drawn).
* Example: P(JohnCalls = True | Earthquake = True)

P(E=true) = 0.002

Earthqu

Burglary

ake
B E

P(A = True|B=b,E=e)

P(B=True) = 0.001

TT

0.95

0.94

0.29

A | P(J = True|A=a) TF
T|0.90 FT
F|0.05

0.001

A| P(M = True|A=a)

1/0.70

HO0.01
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Problem with Sampling

* Probability is so low for some assignments of variables that
that they will likely never be seen in the samples (unless a

very large number of samples is drawn).
* Example: P(JohnCalls = True | Earthquake = True)

P(E=true) = 0.002

Burglary

P(B=True) = 0.001

A

P(J = True|A=a)

Al

Eart

ake

B E

P(A = True|B=b,E=e)

TT

0.95

TF

0.94

FT

0.29

FF

0.001

s

A| P(M = True|A=a)

T/ 0.70

N

0.01

Solution: Likelihood Weighting

* Suppose that E, contains a variable assignment of

the form X, =v

* Current approach:

— Generate samples until enough of them contain X;=v
— Such samples are generated with probability

— p=P(X;=v | Parents(X))

* Likelihood Weighting:
— Generate only samples with X, =v

— Reject samples with X; I=v
— Weight each sample by ® = p
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Likelihood Weighting

Example: Suppose that
we want to compute
an inference with

P(R = True)

E, = (Sprinkler = True

Wet Grass = True)

g P(S =True)
T 010 0.80
Fl 050 0.20
S R | P(W =True)
TT 0.99
TF 0.90
FT 0.90
FF 0.01

d P(S =True)

T 0.10

F 0.50
S R | P(W =True)
TT 0.99
TF 0.90
FT 0.90
FF 0.01

Likelihood Weighting

1. Randomly choose C. C=
True with probability 0.5
- C=True

C| P(R =True)

0.80

0.20

e m|H
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(@]

P(S =True)

—

0.10

0.50

S R | P(W =True)
TT 0.99
TF 0.90
FT 0.90
FF 0.01
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Likelihood Weighting

[Fo-0s ]
CCoudy >

C| P(R =True)
T 0.80
0.20

Qe Grass

1. Randomly choose C. C=

True with probability 0.5
- C=True

Likelihood Weighting

i

E C| P(R =True)
T 0.80
0.50 Fl 020
CSprinkler > (CRain )

S R | P(W =True)

TT 0.99

TF 0.90

FT 0.90

FF 0.01

1. Randomly choose C.
C = True with probability
0.5 > C=
True

2. Set S=True
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Likelihood Weighting

1.

Randomly choose C.

C = True with probability
0.5 >C=
True

. Set S=True

Likelihood Weighting

!

EEE

0.50

Cprinkler >

P(W = True)
0.99
0.90
0.90
0.01

0.20

[ |

S R
TT
TF
FT
FF

1.

2.

3.

Randomly choose C.

C = True with probability
0.5 2> C:-
True

Set S =True

Randomly choose R.

R = True with probability
0.80

R =True
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l0=10x010x099 | *

E P(S =True)

P(W = True)

0.90

R
TF
FT

0.90

FF

0.01

P(W = True)

TF

0.90

FT

0.90

FF

0.01

Likelihood Weighting

i

P(R = True)

0.20

Randomly choose C.

C = True with probability
0.5 2> C-=
True

2. Set S=True

. Randomly choose R.

R = True with probability
0.80 >
R =True

. Set W =True

Likelihood Weighting

. Randomly choose C.

C = True with probability

0.5 2> C-=
choose R.
ith probability
9
. Set W =True
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Likelihood Weighting

C|S |R|W 1. Randomly choose C.
C = True with probability
T 0.5 2> C-=
True

. Set S=True

F 0.50
Sprinkler Rain
N
TF 0.90
FT 0.90
FF 0.01 Wet Grass
4, Set W =True

* Two lessons: Get closer faster to target distribution by
— Rejecting samples that are not helpful
— Weighting the samples based on importance

* Assumption:
— p(x) isimpossible to compute but § (x) can be
computed:
1
p(x) =—p(x)
— Gets around the normalization issue

N

N

12
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Rejection
* Proposal distribution (simple): kq(x) = p(x)
1. Generate xfrom g(.)
2. Generate u from U[0 kq(x)]
3. Reject sample if u > p(x)
* The closer gis to p the lower the rate of
rejection because p(reject) = 1 —%fﬁ

kg and p match
well = we reject
a lot of the

samples from g

kqand p match well
- we keep a lot of
the samples from g
here

\

v

13
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Importance

* Again “simple” proposal distribution g

Bad approximation because we can’t sample
from pdirectly:

Ep(f) = [ FOOP() ~ 3 % f (x0)
Ep(f) = ff(x) plx )q( ) _Zif(xi) p(x;)

q(x) q(xi)
_

If x; are sam Ied from
1 P 9 “Importance” of x;

Importance

 pis not normalized so instead:

_1 p(x) px)
B (N =5 | )q(x)q( X~ Zf( DL

p(x;)
For f= 1__Zlq(xl)
* Ep(f) =
SifGeowe w = "("”/(zzp(xl)/q(xo)

\\\

“Im ortance of x;
If x; are sampled from g P t

14
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Bl

v

i ' .
§Very small=>

p|s small, but we wont_ P Large >

find many samples in this not useful a

region because gis small sample very useful
sample

Compromise: SIR

* Fine to evaluate expectation but we may want to draw
actual samples

* Draw Nsamples x;, w; (with normalized w;)

» Draw again Nsamples from (xq,..,xy)

using distribution (wq,..,wy)

* Basically: Smart way of reject samples with low weight
* Guaranteed to converge to p when N-> oo

15



Accumulate more
samples in this region

Reject as
not useful

w Very small=>

p is small, but we won’t

p von ¢ not useful w Large >
find many samples in this sample very useful
region because gis small P sample

Adapting to the sampled distribution

Problem: The proposal distribution g might be
arbitrarily bad relative to p

Idea (Metropolis): Adapt to the local shape of p

1. Condition the choice of a sample on the previous
sample q(x,|x;) (q(a,b) = q(b,a) > 0)

2. Acceptifp(x,) > p(x;)

3. With probability% otherwise
L

Still guaranteed to converge, but samples are not
independent

Very inefficient because ¢ may not be “adapted” to p

2/1/2012
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D increases: We are ina
4+ region of higher probability
where we need more
samples = always accept

q(xolxi)

v

P decreases a lot: We are
4+ inaregion of much lower

probability = mostly reject - . .
P decreases a bit: We areina

region of slightly lower probability
- reject some of the samples

AClx) g (x, Ix)

/

v

0 xi XiXo

17
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Better adaptation
» Same idea but with not requiring symmetric g
1. Acceptif p(x,) > p(x;)
. o B(X0) q(xi]%0) ;
2. With probability 50c) 2Ccal) otherwise
Multiple g, can be used

Example ¢
Small c = Takes small steps (random walk)

Large o = Faster exploration of the space but lots more
rejections

M

q(x;1x0)~N(x,, 0)

MH = Metropolis Hastings

Why does it work?

* The samples x4, .., x; are such that the probability of
choosing a sample at time #+1 depends only on the
previous sample:

Pien) = ) pCres|¥)pCx)

* p converges to a distribution pif:
pCOT(x, x") = p(x)T(x", x)

» Sufficient condition (reversibility):

P(xo) q(xilxo)

TP () alxolx)
— Distribution of x; converges to p

— It turns out that min(1 ) satisfies this condition

18



2/1/2012

Caveats

e Burn-in: Takes a (unknown, possible long)
amount of time to converge to p

* Selection of g: Compromise between moving
fast through space and not rejecting too
many samples

Back to sampling from joint distribution

We want to sample from p(X) = p(x4,.., %)
Assume that it’s easy to sample from: g, (x) =
p(x|X\k)

* Use g, as nproposals used in turn

Turns out that these proposals are always accepted

* Gibbs sampling (step i):
Sample X141 from p(x[Xy, ., Xn)

Sample xp;41 from pQx|xqi41,.., Xn_1i41)

19
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Sequential models

Interesting cases:

P(x;41]x;) hard > Need to sample
P(y¢|x;) “easy” to evaluate for a given x;
Localization:

x = [u v 8] complex banana transition distribution
Given position/orientation: Can compute measurements

Tracking:

x = positions and orientations of many joints = Very non-linear;
hard to manipulate but can be sampled

Sequential models
P(Xes1lY1.e+)aP Vera x4 DD Xeg11Y1:6)

P(Xe1ly1e) = fp(xt+1|xt)p(xt|y1:t)dxt

Suppose that we have K'samples wf, x

describing the distribution at the previous time
step:

p(xes1lyie) = Z Wfp(xtﬂle)
k

20



Example particle filter

e [=1, K
1. Sample x{,; from
~ k ky.

PXeplyr:e) = D wep(Xeqqlxf):
a. Pick asample x} using the distribution (wg,.., wf)
b. Sample x}, from p(xp4q|xh)

2. Assign weight Wi,y = p(Ves1l¥és1)

3. Normalize w,

p(xes1lyr.e)
Xt+1

P(th+1|xt+y/§\

1

l
P(Xes1lyiie+1) Wer Xe+1

2/1/2012
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Sampling

* First (simple and silly) example on a couple of
Bayes nets

— Ancestral and likelihood sampling
* General techniques

— Rejection

— Importance

— MCMC

— Gibbs

— Sequential (particles)
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