Reasoning with uncertainty IV

- Arbitrary connections between state and observation variables at any time t
1. Replicate over time (unroll) \rightarrow General graph, can't do exact inference directly (i
	- 1. Replicate over time (unroll) \rightarrow General graph, can't do exact inference directly (in general)
2. Collapse state variables wrt observed $\rightarrow K^p$ state tables in general Collapse state variables wrt observed \rightarrow K^p state tables in general
- In the discrete case, $DBN \leq >> HMM$ but note the complexity issue
- Alternative
	- Sampling
	- Variational, Assumed density

Approximate inference

- In general: Cannot compute $P(X_i)$ or $P(X_1, \ldots, X_n)$ directly
- Need to use approximation
	- Sampling

 $-$ Define tractable simpler P' and find approximation

Sampling from distribution

- Given known distribution $P(x)$ always possible to draw samples from $P(x)$
- In general (e.g., non-tree models) $P(X_1, ..., X_n)$ cannot be represented explicitly \rightarrow Cannot sample directly
- How to/why use samples:
	- Use distribution to compute statistics, e.g., expectations

$$
E_P(f) = \int f(x)p(x) \approx \frac{1}{N} \sum_i f(x_i)
$$

 x_i must be independent and follow the distribution $P!$

- First (simple and silly) example on a couple of Bayes nets
	- Ancestral and likelihood sampling
- General techniques
	- Rejection
	- Importance
	- MCMC
	- Gibbs
	- Sequential (particles)

Approximate Method: Sampling

- General idea:
	- It is often difficult to compute and represent exactly the probability distribution of a set of variables
	- But, it is often easy to generate examples from the distribution

For a large number of samples,

 $P(X_1=x_1, X_2=x_2,...,X_m=x_m)$ is approximately equal to:

of samples with X_1 = X_1 and X_2 = X_2 ...and $X_m = X_m$

Total # of samples

Sampling Example

• Generate a set of variable assignments with the same distribution as the joint distribution represented by the network

1. Randomly choose C. $C =$ True with probability 0.5 \rightarrow C = True

2. Randomly choose S. $S =$ True with probability 0.10 \rightarrow S = False

1. Randomly choose C. $C =$ True with probability 0.5

2. Randomly choose S. $S =$ True with probability 0.10

- 3. Randomly choose R. $R =$ True with probability 0.80
- 4. Randomly choose W. $W =$ True with probability 0.90

Problem with Sampling

- Probability is so low for some assignments of variables that that will likely never be seen in the samples (unless a very large number of samples is drawn).
- Example: P(JohnCalls = True | Earthquake = True)

Solution: Likelihood Weighting

- Suppose that E_2 contains a variable assignment of the form $X_i = v$
- Current approach:
	- Generate samples until enough of them contain $X_i = v$
	- Such samples are generated with probability
	- $-$ p = P(X_i = v | Parents(X_i))
- Likelihood Weighting:
	- Generate only samples with $X_i = v$
	- *Reject* samples with X_i != v
	- $-$ *Weight* each sample by ω = p

Likelihood Weighting

Likelihood Weighting

8

9

Likelihood Weighting

- 1. Randomly choose C. $C = True$ with probability 0.5 \rightarrow C = **True**
- 2. Set $S = True$
- 3. Randomly choose R. R = True with probability $0.80 \rightarrow$ $R = True$
- 4. Set $W = True$

Likelihood Weighting

- Two lessons: Get closer faster to target distribution by
	- Rejecting samples that are not helpful
	- Weighting the samples based on importance
- Assumption:
	- $p(x)$ is impossible to compute but $\tilde{p}(x)$ can be computed:

$$
p(x) = \frac{1}{Z}\tilde{p}(x)
$$

- Gets around the normalization issue

Rejection

- Proposal distribution (simple): $kq(x) \geq \tilde{p}(x)$
	- 1. Generate x from $q(.)$
	- $2.$ Generate *u* from $U[0 \; kq(x)]$
	- 3. Reject sample if $u > \tilde{p}(x)$
- The closer q is to \tilde{p} the lower the rate of rejection because p (reject) = $1 - \frac{1}{k} \int \tilde{p}$

Importance

- Again "simple" proposal distribution q
- Bad approximation because we can't sample from p directly:

•
$$
E_P(f) = \int f(x)p(x) \approx \frac{1}{N} \sum_i f(x_i)
$$

•
$$
E_P(f) = \int f(x) \frac{p(x)}{q(x)} q(x) \approx \frac{1}{N} \sum_i f(x_i) \frac{p(x_i)}{q(x_i)}
$$

"Importance" of x_i

Importance

• p is not normalized so instead: $E_P(f) = \frac{1}{Z} \int f(x) \frac{\tilde{p}(x)}{q(x)} q(x) \approx \frac{1}{Z} \frac{1}{N} \sum f(x_i) \frac{\tilde{p}(x_i)}{q(x_i)}$ For $f = 1: \frac{1}{7} \frac{1}{N} \sum_i \frac{\tilde{p}(x_i)}{q(x_i)} = 1$ • $E_p(f) \approx$ $\sum_i f(x_i) w_i$ $w_i = \frac{\tilde{p}(x_i)}{q(x_i)}/(\sum_i \tilde{p}(x_i)/q(x_i))$ "Importance" of x_i If x_i are sampled from q

Compromise: SIR

- Fine to evaluate expectation but we may want to draw actual samples
- Draw N samples x_i, w_i (with normalized w_i)
- Draw again N samples from (x_1, \ldots, x_N) using distribution $(w_1, ..., w_N)$
- Basically: Smart way of reject samples with low weight
- Guaranteed to converge to p when $N\rightarrow\infty$

Adapting to the sampled distribution

- Problem: The proposal distribution q might be arbitrarily bad relative to p
- Idea (Metropolis): Adapt to the local shape of p
- 1. Condition the choice of a sample on the previous sample $q(x_0|x_i)$ $(q(a,b) = q(b,a) > 0)$
- 2. Accept if $\tilde{p}(x_0) > \tilde{p}(x_i)$
- 3. With probability $\frac{\tilde{p}(x_0)}{\tilde{p}(x_i)}$ otherwise

Still guaranteed to converge, but samples are not independent

Very inefficient because q may not be "adapted" to p

Better adaptation

- \bullet Same idea but with not requiring symmetric q
- 1. Accept if $\tilde{p}(x_o) > \tilde{p}(x_i)$
- 2. With probability $\frac{\tilde{p}(x_o)}{\tilde{p}(x_i)} \frac{q(x_i|x_o)}{q(x_o|x_i)}$ otherwise

Multiple q_k can be used

Example q : Small σ = Takes small steps (random walk) Large σ = Faster exploration of the space but lots more rejections $q(x_i|x_o) \sim N(x_o, \sigma)$

MH = Metropolis Hastings

Why does it work?

The samples x_1, \ldots, x_t are such that the probability of choosing a sample at time $t+1$ depends only on the previous sample:

$$
\bar{p}(x_{t+1}) = \sum_{x_t} p(x_{t+1}|x_t)\bar{p}(x_t)
$$

 \bar{p} converges to a distribution p if:

$$
p(x)T(x,x') = p(x')T(x',x)
$$

- Sufficient condition (reversibility):
	- It turns out that $\min(1, \frac{\tilde{p}(x_o)}{\tilde{p}(x_i)} \frac{q(x_i|x_o)}{q(x_o|x_i)})$ satisfies this condition
	- Distribution of x_t converges to p

Caveats

- Burn-in: Takes a (unknown, possible long) amount of time to converge to p
- Selection of q*:* Compromise between moving fast through space and not rejecting too many samples

Back to sampling from joint distribution

- We want to sample from $p(X) = p(x_1, ..., x_n)$
- Assume that it's easy to sample from: $q_k(x) =$ $p(x|X_{\backslash k})$
- Use q_k as *n* proposals used in turn
- Turns out that these proposals are always accepted

```
• Gibbs sampling (step \hat{\eta}):
Sample x_{1i+1} from p(x|x_{2i},...,x_{ni})Sample x_{ki+1} from p(x|x_{1i+1},...,x_{k-1i+1},x_{k+1i},...,x_{ni})Sample x_{ni+1} from p(x|x_{1i+1},...,x_{n-1i+1})
```


- Interesting cases:
- $P(x_{t+1} | x_t)$ hard \rightarrow Need to sample
- $P(y_t|x_t)$ "easy" to evaluate for a given x_t
- Localization: $x = [u \ v \ \theta]$ complex banana transition distribution Given position/orientation: Can compute measurements
- Tracking:

 $x =$ positions and orientations of many joints \rightarrow Very non-linear; hard to manipulate but can be sampled

Sequential models

$$
p(x_{t+1}|y_{1:t+1})\alpha p(y_{t+1}|x_{t+1})p(x_{t+1}|y_{1:t})
$$

$$
p(x_{t+1}|y_{1:t}) = \int p(x_{t+1}|x_t)p(x_t|y_{1:t})dx_t
$$

Suppose that we have K samples w_t^k , x_t^k describing the distribution at the previous time step:

$$
p(x_{t+1}|y_{1:t}) \approx \sum_{k} w_t^k p(x_{t+1}|x_t^k)
$$

Example particle filter

•
$$
L = 1, \ldots, K:
$$

- 1. Sample x_{t+1}^l from
 $p(x_{t+1}|y_{1:t}) \approx \sum_k w_t^k p(x_{t+1}|x_t^k)$:
	- a. Pick a sample x_t^l using the distribution $(w_t^1, ..., w_t^K)$
	- b. Sample x_{t+1}^l from $p(x_{t+1} | x_t^l)$
- 2. Assign weight $w_{t+1}^l = p(y_{t+1} | x_{t+1}^l)$
- 3. Normalize w_{t+1}^l

- First (simple and silly) example on a couple of Bayes nets
	- Ancestral and likelihood sampling
- General techniques
	- Rejection
	- Importance
	- MCMC
	- Gibbs
	- Sequential (particles)