Reasoning with uncertainty IV

- Arbitrary connections between state and observation variables at any time t
 - Replicate over time (unroll) → General graph, can't do exact inference directly (in general)
 Collapse state variables wrt observed → K^D state tables in general
- In the discrete case, DBN <=> HMM but note the complexity issue
- Alternative

٠

- Sampling
- Variational, Assumed density

Approximate inference

- In general: Cannot compute P(X_i) or P(X₁,..,X_n) directly
- Need to use approximation
 - Sampling

- Define tractable simpler P'and find approximation

Sampling from distribution

- Given known distribution P(x) always possible to draw samples from P(x)
- In general (e.g., non-tree models) P(x₁,...,x_n) cannot be represented explicitly → Cannot sample directly
- How to/why use samples:
 - Use distribution to compute statistics, e.g., expectations

$$E_P(f) = \int f(x)p(x) \approx \frac{1}{N} \sum_i f(x_i)$$

 x_i must be independent and follow the distribution P!

- First (simple and silly) example on a couple of Bayes nets
 - Ancestral and likelihood sampling
- General techniques
 - Rejection
 - Importance
 - MCMC
 - Gibbs
 - Sequential (particles)

Approximate Method: Sampling

- General idea:
 - It is often difficult to compute and represent exactly the probability distribution of a set of variables
 - But, it is often easy to generate examples from the distribution

For a large number of samples, $P(X_1=x_1, X_2=x_2, ..., X_m = x_m)$

is approximately equal to:

of samples with $X_1=x_1$ and $X_2=x_2$...and $X_m=x_m$

Total # of samples

Sampling Example

• Generate a set of variable assignments with the same distribution as the joint distribution represented by the network

C =

1. Randomly choose C. C = True with probability 0.5 \rightarrow C = True

2. Randomly choose S. S = True with probability 0.10 \rightarrow S = False

1. Randomly choose C. C = True with probability 0.5

2. Randomly choose S. S = True with probability 0.10

- 3. Randomly choose R. R = True with probability 0.80
- 4. Randomly choose W. W = True with probability 0.90

Problem with Sampling

- · Probability is so low for some assignments of variables that that will likely never be seen in the samples (unless a very large number of samples is drawn).
- Example: P(JohnCalls = True | Earthquake = True)

Solution: Likelihood Weighting

- Suppose that E₂ contains a variable assignment of the form X_i = v
- Current approach:
 - Generate samples until enough of them contain X_i = v
 - Such samples are generated with probability
 - $p = P(X_i = v | Parents(X_i))$
- Likelihood Weighting:
 - Generate only samples with $X_i = v$
 - Reject samples with X_i != v
 - Weight each sample by ω = p

Likelihood Weighting

Likelihood Weighting

1. Randomly choose C. C =True with probability 0.5 $\rightarrow C =$ True

Likelihood Weighting

- 1. Randomly choose C. C = True with probability 0.5 \rightarrow C = True
- 2. Set <mark>S = True</mark>
- Randomly choose R.
 R = True with probability
 0.80 →
 R = True
- 4. Set W = True

Likelihood Weighting

- Two lessons: Get closer faster to target distribution by

 Rejecting samples that are not helpful
 - Rejecting samples that are not neipiul
 - Weighting the samples based on importance
- Assumption:
 - p(x) is impossible to compute but $\tilde{p}(x)$ can be computed:

$$p(x) = \frac{1}{Z}\tilde{p}(x)$$

- Gets around the normalization issue

Rejection

- Proposal distribution (simple): $kq(x) \ge \tilde{p}(x)$
 - 1. Generate *x* from q(.)
 - 2. Generate *u* from U[0 kq(x)]
 - 3. Reject sample if $u > \tilde{p}(x)$
- The closer q is to \tilde{p} the lower the rate of rejection because $p(\text{reject}) = 1 \frac{1}{k} \int \tilde{p}$

Importance

- Again "simple" proposal distribution q
- Bad approximation because we can't sample from *p* directly:

•
$$E_P(f) = \int f(x)p(x) \approx \frac{1}{N} \sum_i f(x_i)$$

•
$$E_P(f) = \int f(x) \frac{p(x)}{q(x)} q(x) \approx \frac{1}{N} \sum_i f(x_i) \frac{p(x_i)}{q(x_i)}$$

If x_i are sampled from q

"Importance" of x_i

Importance

• *p* is not normalized so instead: $E_P(f) = \frac{1}{Z} \int f(x) \ \frac{\tilde{p}(x)}{q(x)} q(x) \approx \frac{1}{Z} \frac{1}{N} \sum_i f(x_i) \frac{\tilde{p}(x_i)}{q(x_i)}$ For $f = 1: \frac{1}{z} \frac{1}{N} \sum_{i} \frac{\tilde{p}(x_i)}{a(x_i)} = 1$ • $E_P(f) \approx$ $\sum_{i} f(x_i) w_i \quad w_i = \frac{\tilde{p}(x_i)}{q(x_i)} / (\sum_{l} \tilde{p}(x_l) / q(x_l))$ "Importance" of x_i

If x_i are sampled from q

Compromise: SIR

- Fine to evaluate expectation but we may want to draw actual samples
- Draw N samples x_i, w_i (with normalized w_i)
- Draw again N samples from $(x_1, ..., x_N)$ using distribution $(w_1, ..., w_N)$
- Basically: Smart way of reject samples with low weight
- Guaranteed to converge to p when $N \rightarrow \infty$

Adapting to the sampled distribution

- Problem: The proposal distribution q might be arbitrarily bad relative to p
- Idea (Metropolis): Adapt to the local shape of p
- 1. Condition the choice of a sample on the previous sample $q(x_o|x_i)$ (q(a,b) = q(b,a) > 0)
- 2. Accept if $\tilde{p}(x_o) > \tilde{p}(x_i)$
- 3. With probability $\frac{\tilde{p}(x_0)}{\tilde{p}(x_i)}$ otherwise

Still guaranteed to converge, but samples are not independent

Very inefficient because q may not be "adapted" to p

Better adaptation

- Same idea but with not requiring symmetric q
- 1. Accept if $\tilde{p}(x_o) > \tilde{p}(x_i)$
- 2. With probability $\frac{\tilde{p}(x_0)}{\tilde{p}(x_i)} \frac{q(x_i|x_0)}{q(x_0|x_i)}$ otherwise

Multiple q_k can be used

Example *q*: Small σ = Takes small steps (random walk) Large σ = Faster exploration of the space but lots more rejections $q(x_i|x_o) \sim N(x_o, \sigma)$

MH = Metropolis Hastings

Why does it work?

 The samples x₁,..., x_t are such that the probability of choosing a sample at time t+1 depends only on the previous sample:

$$\bar{p}(x_{t+1}) = \sum_{x_t} p(x_{t+1}|x_t)\bar{p}(x_t)$$

• \bar{p} converges to a distribution p if:

$$p(x)T(x,x') = p(x')T(x',x)$$

- Sufficient condition (reversibility):
 - It turns out that $\min(1, \frac{\tilde{p}(x_o)}{\tilde{p}(x_i)} \frac{q(x_i|x_o)}{q(x_o|x_i)})$ satisfies this condition
 - Distribution of x_t converges to p

Caveats

- Burn-in: Takes a (unknown, possible long) amount of time to converge to p
- Selection of *q*: Compromise between moving fast through space and not rejecting too many samples

Back to sampling from joint distribution

- We want to sample from $p(X) = p(x_1, ..., x_n)$
- Assume that it's easy to sample from: $q_k(x) = p(x|X_{\setminus k})$
- Use q_k as *n* proposals used in turn
- Turns out that these proposals are *always* accepted

```
• Gibbs sampling (step i):
Sample x_{1i+1} from p(x|x_{2i},...,x_{ni})
......
Sample x_{ki+1} from p(x|x_{1i+1},...,x_{k-1i+1},x_{k+1i},...,x_{ni})
......
Sample x_{ni+1} from p(x|x_{1i+1},...,x_{n-1i+1})
```


- Interesting cases:
- $P(x_{t+1}|x_t)$ hard \rightarrow Need to sample
- $P(y_t|x_t)$ "easy" to evaluate for a given x_t
- Localization:
 x = [u v θ] complex banana transition distribution
 Given position/orientation: Can compute measurements
- Tracking:

x = positions and orientations of many joints \rightarrow Very non-linear; hard to manipulate but can be sampled

Sequential models $p(x_{t+1}|y_{1:t+1})\alpha p(y_{t+1}|x_{t+1})p(x_{t+1}|y_{1:t})$ $p(x_{t+1}|y_{1:t}) = \int p(x_{t+1}|x_t)p(x_t|y_{1:t})dx_t$

Suppose that we have K samples w_t^k , x_t^k describing the distribution at the previous time step:

$$p(x_{t+1}|y_{1:t}) \approx \sum_{k} w_{t}^{k} p(x_{t+1}|x_{t}^{k})$$

Example particle filter

•
$$L = 1, ..., K$$
:

- 1. Sample x_{t+1}^{l} from $p(x_{t+1}|y_{1:t}) \approx \sum_{k} w_{t}^{k} p(x_{t+1}|x_{t}^{k})$:
 - a. Pick a sample x_t^l using the distribution $(w_t^1, ..., w_t^K)$
 - b. Sample x_{t+1}^l from $p(x_{t+1}|x_t^l)$
- 2. Assign weight $w_{t+1}^{l} = p(y_{t+1}|x_{t+1}^{l})$
- 3. Normalize w_{t+1}^l

- First (simple and silly) example on a couple of Bayes nets
 - Ancestral and likelihood sampling
- General techniques
 - Rejection
 - Importance
 - MCMC
 - Gibbs
 - Sequential (particles)