Reasoning with uncertainty

- (Very) basic review of probability and uncertainty
- Joint distribution and inference
- Exploiting independences
- Special case: Directed graphs
- General case: Undirected graphs, factor graphs
- Examples
- Deterministic:
- Represent facts and constraints
- Find configuration that satisfies representation
- Examples:
- Clauses $A \wedge B \Rightarrow C$
- Satisfiability problems

$$
\varphi=\{(\neg C),(A \vee B \vee C),(\neg A \vee B \vee E),(\neg B \vee C \vee D)\} .
$$

$$
\begin{aligned}
& \boldsymbol{f}_{\mathbf{1}}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{3}\right) \\
& \boldsymbol{f}_{\mathbf{2}}\left(\boldsymbol{x}_{2}, \boldsymbol{x}_{3}, \boldsymbol{x}_{5}\right) \\
& \boldsymbol{f}_{3}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{4}\right) \\
& \boldsymbol{f}_{4}\left(\boldsymbol{x}_{4}, \boldsymbol{x}_{5}\right) \\
& \min _{t \in S o l}\left\{\sum_{i=1}^{m^{\prime}} f_{i}(t)\right\}
\end{aligned}
$$

- Generalization to include uncertainty due to imperfect knowledge
- Variables: Deterministic \rightarrow Random variables
- Constraints: Deterministic functions (e.g., CNF, CSP, SAT) \rightarrow continuous output
- Similar problems, generalization
- What we have: scores from noisy classifiers from local features (P (label|image features))
- What would like:

- What we get:

Reasoning

- Need to use knowledge about the world
- Need to integrate uncertainty in "sensing"
- Scenes:
- "road scenes" contain "cars", "building"....
- "Office scenes" contain "desks", "computers"...
- Co-occurrence:
- "keyboard" implies "mouse"
- Location:
- "Cars" are on top of "roads"
- "Sky" is above "buildings"

Reasoning with uncertainty

- Need use uncertain knowledge about the world
- Scenes:
- "road scenes" is likely to contain "cars", "building"....
- "Office scenes" is likely to contain "desks", "computers"...
- Co-occurrence:
- "keyboard" usually implies "mouse"
- Probably possible to represent uncertainty on each individual piece of knowledge
- Intractable to integrate them all to find the "optimal" interpretation

Probability Reminder

- Conditional probability for 2 events A and B :

$$
P(A \mid B)=\frac{P(A, B)}{P(B)}
$$

- Chain rule:

$$
P(A, B)=P(A \mid B) P(B)
$$

Probability Reminder

- Conditional probability for 2 variables X and Y :

$$
P(X=x \mid Y=y)=\frac{P(X=x, Y=y)}{P(Y=y)}
$$

- Chain rule:

$$
P(X=x, Y=y)=P(X=x \mid Y=y) P(Y=y)
$$

- For any values x, y

The Joint Distribution

- Joint distribution = collection of all the probabilities $\quad P(X=x, Y$ $=y, Z=z . .$.$) for all possible$ combinations of values.
- For m binary variables, size is 2^{m}
- Any query can be computed from the joint distribution

X	Y	Z	Prob
T	T	T	0.1
T	T	F	0.22
T	F	T	0.2
T	F	F	0.08
F	T	T	0.1
F	T	F	0.15
F	F	T	0.07
F	F	F	0.08

The Joint Distribution

- Any query can be computed from the joint distribution
- Marginal distribution

$$
\mathrm{P}(\mathrm{X}=\text { True }), \mathrm{P}(\mathrm{X}=\text { False })
$$

- Conditional distribution:

$$
\begin{gathered}
P(X=\text { True } \mid Y=\text { True })= \\
P(X=\text { True }, Y=\text { True }) / P(Y=\text { True })
\end{gathered}
$$

- In general:

$$
\begin{gathered}
\mathrm{P}\left(\mathrm{E}_{1} \mid \mathrm{E}_{2}\right)=\mathrm{P}\left(\mathrm{E}_{1}, \mathrm{E}_{2}\right) / \mathrm{P}\left(\mathrm{E}_{2}\right) \\
\mathrm{P}\left(\mathrm{E}_{2}\right)=\sum_{\text {Entries that match } \mathrm{E}_{2}}^{\mathrm{P}(\text { Joint Entries })}
\end{gathered}
$$

X	Y	Z	Prob
T	T	T	0.1
T	T	F	0.22
T	F	T	0.2
T	F	F	0.08
F	T	T	0.1
F	T	F	0.15
F	F	T	0.07
F	F	F	0.08

Summary

- Any query computable from
- Sum rule:
- Product rule

But requires entire joint distribution \rightarrow Represent dependencies between variables

First case: Directed

$$
P(a, b)=P(b \mid a) P(a)
$$

First case: Directed

Graphical Representation

Graphical Representation

Given knowledge of A, knowing anything else in the diagram won't help with J and M

$$
P(A, J, M)=P(A) P(J \mid A) P(M \mid A)
$$

Inference

- Any inference operation of the form P(values of some variables | values of the other variables) can be computed

$$
\mathrm{P}(\mathrm{E}=\text { true })=0.002
$$

Example Naïve Bayes classification

$$
P\left(x_{1}, \ldots, x_{n} \mid y\right)=\prod_{i} P\left(x_{i} \mid y\right)
$$

Example

$y=1$ if face

- Lots of (discretized) features from local filters
- Estimate likelihood ratio

$$
\frac{P\left(x_{1}, . ., x_{n} \mid y=\text { face }\right)}{P\left(x_{1}, . ., x_{n} \mid y=\text { not } \text { face }\right)}
$$

Example

- Need use uncertain knowledge about the world
- Scenes:
- "road scenes" is likely to contain "cars", "building"....
- "Office scenes" is likely to contain "desks", "computers"...
- Co-occurrence:
- "keyboard" usually implies "mouse"
-
- Probably possible to represent uncertainty on each individual piece of knowledge
- Intractable to integrate them all to find the "optimal" interpretation

Examples in the next few slides from: Murphy, Torralba, Freeman; NIPS 2003. Torralba, Murphy, Freeman, CACM 2010.

Murphy, Torralba, Freeman; NIPS 2003. Torralba, Murphy, Freeman, CACM 2010.

Murphy, Torralba, Freeman; NIPS 2003. Torralba, Murphy, Freeman, CACM 2010.

Scene
features

Multiview car detector.

$\mathrm{F}=1$ if car present in box $p(d \mid F=1)$

An integrated model of Scenes, Objects, and Parts

\section*{| 0.36 |
| :---: |
| 0.83 |
| \square |}

- No miracle: Fancy representation can only model the knowledge that we encoded.

Example from Antonio Torralba

Inference

- Can answer any query but : Need to sum over the possible assignments of the hidden variables.
- Variable elimination
- Separation
- Query variables: E_{1}
- Evidence variables: E_{2}
- The rest, E_{3}

Inference: A Simple Case

- Suppose that we want to compute $P(D=d)$ from this network.

A Simple Case

- Compute $P(D=d)$ by summing the joint probability over all possible values of the remaining variables A, B, and C :

$$
P(D=d)=\sum_{a, b, c} P(A=a, B=b, C=c, D=d)
$$

A Simple Case

- Decompose the joint by using the fact that it is the product of terms of the form:

P(X | Parents(X))

$$
P(D=d)=\sum_{a, b, c} P(D=d \mid C=c) P(C=c \mid B=b) P(B=b \mid A=a) P(A=a)
$$

A Simple Case

- We can avoid computing the sum for all possible triplets (A, B, C) by distributing the sums inside the product

$$
P(D=d)=\sum_{c} P(D=d \mid C=c) \sum_{b} P(C=c \mid B=b) \sum_{a} P(B=b \mid A=a) P(A=a)
$$

A Simple Case

This term depends only on B and can be written as a function f_{A} (b)

$$
P(D=d)=\sum_{c} P(D=d \mid C=c) \sum_{b} P(C=c \mid B=b) \sum_{a} P(B=b \mid A=a) P(A=a)
$$

A Simple Case

Example

$$
P(D=d)=\sum_{\text {a.p.c }} P(D=d \mid C=c) P(C=c \mid B=b, A=a) P(B=b) P(A=a)
$$

$$
=\sum_{c} P(D=d \mid C=c) \sum_{b} P(B=b) \sum_{a} P(C=c \mid B=b, A=a) P(A=a)
$$

$$
=\sum_{c} P(D=d \mid C=c) \sum_{b} P(B=b) \sum_{a} f_{1}(a, b, c)
$$

$$
=\sum_{c} P(D=d \mid C=c) \sum_{b} f_{2}(b, c)
$$

General Case: Variable Elimination

- Write the desired probability as a sum over all the unassigned variables

$$
P(D=d)=\sum_{a, b, c} P(A=a, B=b, C=c, D=d)
$$

- Distribute the sums inside the expression
- Pick a variable
- Group together all the terms that contain this variable

$$
P(D=d)=\sum_{c} P(D=d \mid C=c) \sum_{b} P\left(C=c \mid B=b \sum_{a} P(B=b \mid A=a) P(A=a)\right.
$$

- Represent as a single function of the variables appearing in the group

$$
P(D=d)=\sum_{c} P(D=d \mid C=c) \sum_{b} P(C=c \mid B=b) f_{A}(b)
$$

- Repeat until no more variables are left

General Case: Variable Elimination

- Write the desired probability as a sum over all the unassigned variables
Computation exponential in the size of the largest group \rightarrow The order in which the variables are selected is important.
- Pic
- Grou
er all the terms that contain this
variable

$$
P(D=d)=\sum_{c} P(D \mid C=c) \sum_{b} P(C=c \mid B=b) \sum_{a} P(B=b \mid A=a) P(A=a)
$$

- Represent as a single function of the variables appearing in the group

$$
P(D=d)=\sum_{c} P(D=d \mid C=c) \sum_{b} P(C=c \mid B=b) f_{A}(b)
$$

- Repeat until no more variables are left

Special Case

- Polytrees: Undirected version of the graph is a tree
= there is a single undirected path between two nodes
- In this case: Inference linear in the number of nodes ($d^{k+1} n$)
- General case: See later approximate inference (e.g., sampling)

Conditional independence

- $P\left(\right.$ any assignments to $S_{1} \mid$ any assignments to S_{2}, any assignments to $\left.\mathrm{S}_{3}\right)=\mathrm{P}($ assignment to $S_{1} \mid$ assignments to S_{3})
- P (any assignments to S_{1}, any assignments to S_{2} |any assignments to $\left.\mathrm{S}_{3}\right)^{\prime}=\mathrm{P}($ assignment to $\left.\mathrm{S}_{1}\right) \mathrm{P}\left(\right.$ assignments to $\left.\mathrm{S}_{2}\right)$

Finding independences

- The more independence relations we can find, the faster the inference \rightarrow Test to find independences?

$$
p(b \mid c, a)=P(b \mid c) \quad a \perp b \mid c
$$

More General

- How can we find if S_{1} and S_{2} are conditionally independent given E?

$P\left(\right.$ assignments to $S_{1} \mid E$ and assignments to $\left.S_{2}\right)=$ P (assignments to $\left.S_{1} \mid E\right)$
- Why is it important and useful?

We can simplify any computation that contains something like $P\left(S_{1} \mid E, S_{2}\right)$ by $P\left(S_{1} \mid E\right)$
Intuitively E stands in between or "blocks" S_{1} from
S_{2}

$$
\begin{aligned}
& 0-0-0 \\
& 00000 \\
& 000 \\
& 000
\end{aligned}
$$

Blockage: Formal Definition

- A path from a node X to a node Y is blocked by a set E if either:
(1)

The path passes through one node from E

(2)

The path passes through one node from E with diverging arrows
(3)

General case: Undirected

$P(a, b)=\varphi(a, b)$
$P(a, b)=\varphi_{1}(a) \varphi_{2}(b)$

$$
P(a, b, c)=\varphi_{1}(a, b) \varphi_{2}(b, c)
$$

$P(a, b, c)=\varphi_{1}(a, b) \varphi_{2}(b, c)$
$a \perp c \mid b$ because all paths between a and c go through b

$$
\begin{aligned}
& P(a, b, c)=\varphi_{1}(a, b) \varphi_{2}(b, c) \varphi_{3}(a, c) \\
& P(a, b, c)=\varphi(a, b, c)
\end{aligned}
$$

Factor graphs

Directed vs. undirected

$$
\begin{gathered}
P(a, b, c)=\varphi_{1}(a, b) \varphi_{2}(b, c) \varphi_{3}(a, c) \\
\varphi_{1}(a)=P(a) \varphi_{3}(c)=P(c) \\
\varphi_{2}(a, b, c)=P(b \mid a, c)
\end{gathered}
$$

- N regions
- M possible labels
- Somehow, there is a way to estimate how likely a label is given image features $P\left(l_{i} \mid f\right)$
- We want to find the assignment of labels that optimizes
$P\left(l_{1}, . ., l_{N} \mid f\right)$
- Everything is independent:

Gives really stupid results because it does not take into account the distribution of likely relative occurrence of the labels

- Everything is dependent:

$P\left(l_{1}, . ., l_{N} \mid f\right) \alpha \prod P\left(f \mid l_{i}\right) P\left(l_{1}, ., l_{N}\right)$

Hard to learn or represent $P\left(l_{1}, . ., l_{N}\right)$

- Factor pairwise dependencies:

$$
P\left(l_{1}, . ., l_{N}\right)=\prod \varphi\left(l_{i}, l_{j}\right)
$$

$\varphi\left(l_{i}, l_{j}\right)$ can be estimated from co-occurrence statistics from training data

MSRC training data

A. Rabinovich, A. Vedaldi, C. Galleguillos, E. Wiewiora and S. Belongie. Objects in Context. ICCV 2007

Example: MRF for image labeling

Example: MRF for image labeling

- $y=$ class label (e.g., road, car, etc...)
- $x=$ image data at local patch

Example: Inferring human poses

Example from Felzenszwalb’04
$x_{i}=$ Input image data at limb i
$y_{i}=$ Pose (location and orientation) of limb i

- Note: Efficient because tree-structured

