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Path/Motion Planning Il

Examples in this lecture from Max
Likhachev

Two related extensions

1. Online/incremental:

* World model changes as the path from start
to goal is executed

* Naive approach: Replan from scratch every
time there is a change (!)
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Two related extensions

2. Anytime:

* Must be able to work with a sound path from
start to goal within time T (even if not optimal)

* Can update path as time passes
* Get sound path at anytime
* Get optimal path eventually

* Back to “simple” discrete setup for this lecture
(for a while)

* Discrete grid or graph of discrete states

.

.

c(s,s) =
* Infinity if blocked cell
* Distance or traversal cost otherwise
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A*
* ComputePath function

* while(s, . is not expanded)

goal
— remove s with the smallest [f(s) = g(s)+h(s)]from
OPEN;

— for every successor s’ of s

* ifg(s’) > g(s) + c(s,s')
—g(s’) =g(s) +c(s,s’)
— insert s’ into OPEN ’

goal
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A*: Reusing previous values
* v(s) = infinite
e ComputePath function

* while(s,,, is not expanded)

— remove s with the smallest [f(s) = g(s)+h(s)]from
OPEN,;

—Vv(s) =g(s)
— for every successor s’of s
* ifg(s’) > g(s) + c(s,s")

—g(s’) =g(s) +c(s,5’)
— insert s’ into OPEN

During A*, a node s” must satisfy:

= g(S") = Min gre ey V(S”) + ¢(s7S7)

If v(s) > g(s) then s is inconsistent with its neighbors (over-
consistent)

Property:
The OPEN list is the set of over-consistent nodes
A* expands overconsistent states in the order of f(.) = g(.) +

h(.)
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A*: Reusing previous values
. el infini

OPEN = set of states such that v(s) > g(s,
ComputePathReuse function

while(s,,, is not expanded)

— remove s with the smallest [f(s) = g(s)+h(s)]from
OPEN;

—Vv(s) =g(s)

—insert s into CLOSED;

— for every successor s’ of s such that s” not in
CLOSED

* if g(s’) > g(s) + c(s,s’)
—g(s’) = g(s) + c(s,s")
— insert s’ into OPEN

g=1 g=3

v=1 y=13
=0 h=2 h=1 g=35
v=0 VY= oo

CLOSED = {} =2 g= o0
OPEN = {s, Seoa Y
next state to expand: s,
* g(s)=min . peqs V(L) +c(t,s)
* OPEN = s such that v(s) > g(s)
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Example: Repeated weighted A*

* |dea:
— First plan with heuristic gh(.) instead of h(.)
— Choose ¢large - Few expansions = Really fast
— Progressively decrease &

* Key insight from previous slides: Can do that
without recomputing all the values from
scratch for each ¢

Weighted A*

* ComputePathReuse

* while(s,,,is not expanded)

— remove s with the smallest [f(s) = g(s)+&h(s)]from
OPEN,;
—Vv(s)=g(s)
—insert s into CLOSED; -
— for every successor s’ of s such that s’ not in CLOSED

* ifg(s’) > g(s) +c(s,s’)
—g(s’) =g(s) +c(s,s’)
— insert s’ into OPEN

New
conditional
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ARA*: Anytime Repairing A*_

*| OPEN = set of over-consistent states v(s) > g(s)l

* ComputePath function

* while(s, ., is not expanded)

— remove s with the smallest [f(s) = g(s)+&h(s)]from
OPEN;

—v(s)=g(s)
—insert s into CLOSED;

— for every successor s’ of s such that s” not in
CLOSED
* if g(s’) > g(s) + c(s,s’)

—g(s’) =g(s) + c(s,s’)
— insert s’ into OPEN

goal

Example

No reuse:

=235 &=15 c=1.0
I

13 expansions 15 expansions 20 expansions

solution=11 moves solution=11 moves solution=10 moves
With reuse:
&=25 c=1.5 & =1.0

13 expansions 1 expansion 9 expansions
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This takes care of the inconsistent nodes such
that v(s) > g(s)

What if v(s)<g(s) ?

Can happen if edge cost changes

Solution:
— Set v(s) to infinity
— Propagate through connected nodes

5
g=1 =N
v=1 v= 3R
g=0 h=2 4 p=1 =5 o
Do (S
' 2

h=0

g=2 g=>J3
V= _? V= co
h=2 h=1
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Incremental/Online planning: D*

* Plan from goal to start so that most of the g(.)
remain the same

gls) =
path cost to goal

g
start ggoa /
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Start executing path

\.S

start,
goal

Update world:
Mark inconsistent state

- .. @
-~ g(s) # v(s)
-,

goal

'~ Repair plan to new s

\.
~<S

~

start

D* Lite

* until goal is reached:
— ComputePathReuse()

— follow the path until world is updated with new
information

— update the corresponding transition costs

—set s, . tothe current state of the agent

start

* Information-complete, information-optimal

12
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Comparison
First A* search First D*-Lite search

Second A* search Second D*-Lite search

Anytime D*
* set ¢to large value

 until goal is reached
— ComputePathReuse() (weighted &£ A*)

— Follow the path until world is updated with new
information

— Update the corresponding edge costs
— Set s+ to the current state of the agent
— If “significant” changes were observed
* increase gor replan from scratch
—else

* decrease ¢

No miracle: If too many changes we might
as well recompute from scratch

13



Controlling computation: Agent-
centered search
Extreme case:
— Constant (small) amount of computation

— Don’t even try to plan to the goal
— Just plan 1 step ahead

7

v

S

start —

Controlling computation:
Agent-centered search

= argmin s € succ(sstart) C(Sstartl 5) + h(S)

Local minimum problem:
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Controlling computation:
Agent-centered search

e Solution:

* Update h(sstart) =min sEsucc(sstart)C(Sstart' 5) + h(S)
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Learning Real-Time A* (LRTA*)

* Sqqre = CUrrent position
: = mi <
1. Update' h(sstart) =min s€succ(sstart)c(sstart' S) + h(S)

2. Move: Sstart = Argming Esucc(sstart)c(sstart' 5) + h(S)
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LRTA*

* robot is guaranteed to reach goal in finite
number of steps if:

— all costs are bounded from below with A >0

— graph is of finite size and there exists a finite-cost
path to the goal

— all actions are irreversible

* Extension: Expand N steps
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