Path/Motion Planning III

Examples in this lecture from Max Likhachev

Two related extensions

- 1. Online/incremental:
- World model changes as the path from start to goal is executed
- Naïve approach: Replan from scratch every time there is a change (!)

Two related extensions

- 2. Anytime:
- Must be able to work with a sound path from start to goal within time *T* (even if not optimal)
- Can update path as time passes
- Get sound path at anytime
- Get optimal path eventually

- Back to "simple" discrete setup for this lecture (for a while)
- Discrete grid or graph of discrete states

c(s,s') =

- Infinity if blocked cell
- Distance or traversal cost otherwise

A*

- ComputePath function
- while(s_{goal} is not expanded)
 - remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
 - for every successor s' of s
 - if g(s') > g(s) + c(s,s')
 - -g(s') = g(s) + c(s,s')
 - insert s' into OPEN

	14	13	12	11	10	9	8	7	6	6	6	6	6	6	6	6	6	6
	14	13	12	11	10	9	8	7	6	5	5	5	5	5	5	5	5	5
	14	13	12	11	10	9	8	7	6	5	4	4	4	4	4	4	4	4
	14	13	12	11	10	9	8	7	6	5	4	3	3	3	3	3	3	3
	14	13	12	11	10	9	8	7	6	5	4	3	2	2	2	2	2	3
	14	13	12	11	10	9	8	7	6	5	4	3	2	1	1	1	2	3
	14	13	12	11		9		7	6	5	4	3	2	1	Scool	1	2	3
						9				5	4	3	2	$\overline{1}$	Ĩ	1	2	3
	14	13	12	11	10	9	8	7	6	-5	4	3	2	2	2	2	2	3
	14	13	12	11	10	9				5	4	3	3	3	3	3	3	3
	14	13	12	11	10	10		7	6	5	4	4	4	4	4	4	4	4
	14	13	12	11	11	11		7	6	5	5	5	5	5	5	5	5	5
	14	13	12	12	12	12		7	6	6	6	6	6	6	6	6	6	6
						13		7	7	7	7	7	7	7	7	7	7	7
	18	Sstart	16	15	-14	14		8	8	8	8	8	8	8	8	8	8	8
Values g(.) h	have (chan	ged c	only	10	9	8	7	6	6	6	6	6	6	6	6	6	6
in a local ar	ea.				10	9	8	7	6	5	5	5	5	5	5	5	5	5
Can we reus	se the	e old	valu	es	10	9	8	7	6	5	4	4	4	4	4	4	4	4
and ropair t	hon	hth 2			10	9	8	7	6	5	4	3	3	3	3	3	3	3
					10	9	8	7	6	5	4	3	2	2	2	2	2	3
	14	13	12	.11	10	9	8	7	6	5	4	3	2	1	1	1	2	3
	14	13	12			9			6	5	4	3	2	1	Sanat	1	2	3
						10				5	4	3	2	1	1	1	2	3
	15	14	13	12	11	11		7	6	5	4	3	2	2	2	2	2	3
	15	14	13	12	12	Sstart				5	4	3	3	3	3	3	3	3
	15	14	13	13	13	13		7	6	5	4	4	4	4	4	4	4	4
	15	14	14	14	14	14		1	6	5	5	5	5	5	5	5	5	5
	15	15	15	15	15	15		7	6	6	6	6	6	6	6	6	6	6
						16		7	7	7	7	7	7	7	7	7	7	7
	21	20	19	18	17	17		8	8	8	8	8	8	8	8	8	8	8

A*: Reusing previous values

- v(s) = infinite
- ComputePath function
- while(s_{qoal} is not expanded)
 - remove s with the smallest [f(s) = g(s)+h(s)]from OPEN;
 - -v(s) = g(s)
 - for every successor s'of s
 - if g(s') > g(s) + c(s,s')
 - -g(s')=g(s)+c(s,s')
 - insert s' into OPEN

- During A*, a node s' must satisfy: $-g(s') = \min_{s'' \in pred(s')} v(s'') + c(s'',s')$
- If v(s) > g(s) then s is inconsistent with its neighbors (overconsistent)
- Property:
- The OPEN list is the set of over-consistent nodes
- A* expands overconsistent states in the order of f(.) = g(.) + h(.)

A*: Reusing previous values

- v(s) infinite –
- OPEN = set of states such that v(s) > g(s)

ComputePathReuse function

- while(*s_{aoal}* is not expanded)
 - remove s with the smallest [f(s) = g(s)+h(s)]from OPEN;
 - -v(s) = g(s)
 - insert s into CLOSED;
 - for every successor s' of s such that s' not in CLOSED
 - if g(s') > g(s) + c(s,s')
 - -g(s')=g(s)+c(s,s')
 - insert s' into OPEN

- $g(s) = \min_{t \in pred(s)} v(t) + c(t,s)$
- OPEN = s such that v(s) > g(s)

Example: Repeated weighted A*

- Idea:
 - First plan with heuristic $\varepsilon h(.)$ instead of h(.)
 - Choose ε large \rightarrow Few expansions \rightarrow Really fast
 - Progressively decrease ε
- Key insight from previous slides: Can do that without recomputing all the values from scratch for each ε

Weighted A*

ComputePathReuse

- while(s_{aoal} is not expanded)
 - remove *s* with the smallest $[f(s) = g(s) + \varepsilon h(s)]$ from OPEN;
 - -v(s) = g(s)
 - insert s into CLOSED;
 - for every successor s' of s such that s' not in CLOSED

conditional

- if g(s') > g(s) + c(s,s')
 - -g(s')=g(s)+c(s,s')
 - insert s' into OPEN

ARA*: Anytime Repairing A*

- OPEN = set of over-consistent states v(s) > g(s)
- ComputePath function
- while(s_{qoal} is not expanded)
 - remove s with the smallest [f(s) = g(s)+ɛh(s)]from
 OPEN;
 - -v(s) = g(s)
 - insert s into CLOSED;
 - for every successor s' of s such that s' not in CLOSED
 - if g(s') > g(s) + c(s,s')
 - -g(s')=g(s)+c(s,s')
 - insert s' into OPEN

- This takes care of the inconsistent nodes such that v(s) > g(s)
- What if *v(s) < g(s)* ?
- Can happen if edge cost changes
- Solution:
 - Set v(s) to infinity
 - Propagate through connected nodes

Incremental/Online planning: D*

• Plan from goal to start so that most of the g(.) remain the same

- until goal is reached:
 - ComputePathReuse()
 - follow the path until world is updated with new information
 - update the corresponding transition costs
 - set s_{start} to the current state of the agent
- Information-complete, information-optimal

Anytime D*

- set ε to large value
- until goal is reached
 - ComputePathReuse() (weighted εA^*)
 - Follow the path until world is updated with new information
 - Update the corresponding edge costs
 - Set s_{start} to the current state of the agent
 - If "significant" changes were observed
 - increase ε or replan from scratch
 - else
 - decrease ε

No miracle: If too many changes we might as well recompute from scratch

Controlling computation: Agentcentered search

- Extreme case:
 - Constant (small) amount of computation
 - Don't even try to plan to the goal
 - Just plan 1 step ahead

Controlling computation: Agent-centered search

 $s_{start} = \operatorname{argmin}_{s \in \operatorname{succ}(sstart)} c(s_{start}, s) + h(s)$

Local minimum problem:

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.	₩.4	3.4	2.4	1.4	1
5	4	3	2	1	0

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	44		2.4	1.4	1
5	4	3	2	1	0

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	4.4			1.4	1
5	4 ←	(7)		1	0

Controlling computation: Agent-centered search

- Solution:
- Update $h(s_{start}) = \min_{s \in succ(sstart)} c(s_{start}, s) + h(s)$

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	₹.4	3.4	2.4	1.4	1
5	4	3	2	1	0

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	4.4			1.4	1
5	4 ←	(7)		1	0

Learning Real-Time A* (LRTA*)

- *s*_{start} = current position
- 1. Update: $h(s_{start}) = \min_{s \in succ(sstart)} c(s_{start}, s) + h(s)$
- 2. Move: $s_{start} = \operatorname{argmin}_{s \in \operatorname{succ}(sstart)} c(s_{start}, s) + h(s)$

LRTA*

- robot is guaranteed to reach goal in finite number of steps if:
 - all costs are bounded from below with $\Delta > 0$
 - graph is of finite size and there exists a finite-cost path to the goal
 - all actions are irreversible
- Extension: Expand N steps