2/27/2012

Path/Motion Planning Il

Examples in this lecture from Max
Likhachev

Two related extensions

1. Online/incremental:

* World model changes as the path from start
to goal is executed

* Naive approach: Replan from scratch every
time there is a change (!)

2/27/2012

Two related extensions

2. Anytime:

* Must be able to work with a sound path from
start to goal within time T (even if not optimal)

* Can update path as time passes
* Get sound path at anytime
* Get optimal path eventually

* Back to “simple” discrete setup for this lecture
(for a while)

* Discrete grid or graph of discrete states

.

.

c(s,s) =
* Infinity if blocked cell
* Distance or traversal cost otherwise

2/27/2012

A*
* ComputePath function

* while(s, . is not expanded)

goal
— remove s with the smallest [f(s) = g(s)+h(s)]from
OPEN;

— for every successor s’ of s

* ifg(s’) > g(s) + c(s,s')
—g(s’) =g(s) +c(s,s’)
— insert s’ into OPEN ’

goal

432l liololsT7l6le6l6l6]lo6l6l6l6]6]6
Ml lolols 7655551555515
{32110l 98716544444/ 4]4][4
Ml fwlols[76543333333
4312l liolols 765 ala3l2lo]22121]3
141312 o876 5432111]2]3
413] 12 7165 [432 1.0 123

S|4 [3 21y 1L[1]2][3

41312 10 8T d——3——2 | 2 | 2 [2 [2|3

413 [12 9 S|l4[3[3[3[3[3[3[3

413 [12[11[10 7165 44444444

413121111 71655 [s5[5[s5[5[s5[51]>5
1411312 12 7lelelelolelelelele]o
P_B 7177777717777
18 [Simp16 115114 | 14 s s|ls8|8ls8s|slslslsls]ls

Yalues g(.) have changed only T oTs 7 1clclalclelelelaelcls

in a local area. wlolsl7 6555555515715

Can we reuse the old values 18 g g ; g 2 :11 ;1 ijl ;1 ;1 ;1 ;1 4

a 5 B E 3 3 3

AW EEl Ge ey 716154131212 12121213
14 [[110 0 L8SNT 654300] [] [2]3
1413] 12 9 6 | 5 | 41321 [seeu| 1213

S|4 [3 21 [1[1]2]3

VN6 [543 22212123
51433 [3[3[3[3[3
Y165 [4444 alal4]4a
6 [5[5[5[5[5][5[5[15]5
71666 l6|l6l6l6]le6]l6]6
7177177717 17171717
S 8 [8|s|8s|s8l8[8s|s|8][x%

2/27/2012

A*: Reusing previous values
* v(s) = infinite
e ComputePath function

* while(s,,, is not expanded)

— remove s with the smallest [f(s) = g(s)+h(s)]from
OPEN,;

—Vv(s) =g(s)
— for every successor s’of s
* ifg(s’) > g(s) + c(s,s")

—g(s’) =g(s) +c(s,5’)
— insert s’ into OPEN

During A*, a node s” must satisfy:

= g(S") = Min gre ey V(S”) + ¢(s7S7)

If v(s) > g(s) then s is inconsistent with its neighbors (over-
consistent)

Property:
The OPEN list is the set of over-consistent nodes
A* expands overconsistent states in the order of f(.) = g(.) +

h(.)

2/27/2012

A*: Reusing previous values
. el infini

OPEN = set of states such that v(s) > g(s,
ComputePathReuse function

while(s,,, is not expanded)

— remove s with the smallest [f(s) = g(s)+h(s)]from
OPEN;

—Vv(s) =g(s)

—insert s into CLOSED;

— for every successor s’ of s such that s” not in
CLOSED

* if g(s’) > g(s) + c(s,s’)
—g(s’) = g(s) + c(s,s")
— insert s’ into OPEN

g=1 g=3

v=1 y=13
=0 h=2 h=1 g=35
v=0 VY= oo

CLOSED = {} =2 g= o0
OPEN = {s, Seoa Y
next state to expand: s,
* g(s)=min . peqs V(L) +c(t,s)
* OPEN = s such that v(s) > g(s)

2/27/2012

N e
o 1 7
DO o = !

[]

IIE\Iy

TTw
Il
by = =

)

3

3

g:

v

o

CLOSED
OPEN

= o0

h=1I

S goaf}

i

o

Sgoaf

next state to expand.

v
h=1

8y = = l\ by = o=
— '
S
[T Saa
T 5 +
Gy = =N U _rpm{?f.
[
m__
=
SE 3
C Q=

2/27/2012

Example: Repeated weighted A*

* |dea:
— First plan with heuristic gh(.) instead of h(.)
— Choose ¢large - Few expansions = Really fast
— Progressively decrease &

* Key insight from previous slides: Can do that
without recomputing all the values from
scratch for each ¢

Weighted A*

* ComputePathReuse

* while(s,,,is not expanded)

— remove s with the smallest [f(s) = g(s)+&h(s)]from
OPEN,;
—Vv(s)=g(s)
—insert s into CLOSED; -
— for every successor s’ of s such that s’ not in CLOSED

* ifg(s’) > g(s) +c(s,s’)
—g(s’) =g(s) +c(s,s’)
— insert s’ into OPEN

New
conditional

2/27/2012

ARA*: Anytime Repairing A*_

*| OPEN = set of over-consistent states v(s) > g(s)l

* ComputePath function

* while(s, ., is not expanded)

— remove s with the smallest [f(s) = g(s)+&h(s)]from
OPEN;

—v(s)=g(s)
—insert s into CLOSED;

— for every successor s’ of s such that s” not in
CLOSED
* if g(s’) > g(s) + c(s,s’)

—g(s’) =g(s) + c(s,s’)
— insert s’ into OPEN

goal

Example

No reuse:

=235 &=15 c=1.0
I

13 expansions 15 expansions 20 expansions

solution=11 moves solution=11 moves solution=10 moves
With reuse:
&=25 c=1.5 & =1.0

13 expansions 1 expansion 9 expansions

2/27/2012

This takes care of the inconsistent nodes such
that v(s) > g(s)

What if v(s)<g(s) ?

Can happen if edge cost changes

Solution:
— Set v(s) to infinity
— Propagate through connected nodes

5
g=1 =N
v=1 v= 3R
g=0 h=2 4 p=1 =5 o
Do (S
' 2

h=0

g=2 g=>J3
V= _? V= co
h=2 h=1

2/27/2012

oo
oo

h=1

v

2

h_

expand s

h=

~ ey —_ R B
gl —_— |
0y = = by =

TTT
oy > =

10

= Ug
I
S S

=
I
L5

g=1 g=>J
v=1 V= oo
h=2 h=1 g:

: : /\é \pa”d SPOG!‘

= Uq

Il
Lo 1y ()

-

i II
~ n (J]

=
Il
=
Il

Incremental/Online planning: D*

* Plan from goal to start so that most of the g(.)
remain the same

gls) =
path cost to goal

g
start ggoa /

2/27/2012

11

2/27/2012

Start executing path

\.S

start,
goal

Update world:
Mark inconsistent state

- .. @
-~ g(s) # v(s)
-,

goal

'~ Repair plan to new s

\.
~<S

~

start

D* Lite

* until goal is reached:
— ComputePathReuse()

— follow the path until world is updated with new
information

— update the corresponding transition costs

—set s, . tothe current state of the agent

start

* Information-complete, information-optimal

12

2/27/2012

Comparison
First A* search First D*-Lite search

Second A* search Second D*-Lite search

Anytime D*
* set ¢to large value

 until goal is reached
— ComputePathReuse() (weighted &£ A*)

— Follow the path until world is updated with new
information

— Update the corresponding edge costs
— Set s+ to the current state of the agent
— If “significant” changes were observed
* increase gor replan from scratch
—else

* decrease ¢

No miracle: If too many changes we might
as well recompute from scratch

13

Controlling computation: Agent-
centered search
Extreme case:
— Constant (small) amount of computation

— Don’t even try to plan to the goal
— Just plan 1 step ahead

7

v

S

start —

Controlling computation:
Agent-centered search

= argmin s € succ(sstart) C(Sstartl 5) + h(S)

Local minimum problem:

423834 625242

3.8 2.8 24 584838

= oo |
o |
s

342414 5.4

O = | W
|| w

3 (2|1 51413

[—
. .
= — 2 (V'S

2/27/2012

14

2/27/2012

Controlling computation:
Agent-centered search

e Solution:

* Update h(sstart) =min sEsucc(sstart)C(Sstart' 5) + h(S)

51413 (2|1

6.2/52/423.83.43 6.25204238343 6.2/5214.23.8343
58 4.8 3.82.8 242 5.8 4.8 3828242 58 4.8 3.82.8242
/59'!1.4 3424141 5.4 24141 54 4. 141

0 514 (3 12]1 |0 5 @ 110

Learning Real-Time A* (LRTA*)

* Sqqre = CUrrent position
: = mi <
1. Update' h(sstart) =min s€succ(sstart)c(sstart' S) + h(S)

2. Move: Sstart = Argming Esucc(sstart)c(sstart' 5) + h(S)

15

6.2 5214238343 6.215242 38343 6215204238343
5.8 483828242 5.8 483828242 58483828242

A3.4241.41 5.4 24141

(5
514 (3121|110 514 |3 (2 (110

62 5ad3d343 | 652434343 [625]a3d343
58483828242 2
5.4] 4 141 1
5 (545 1 {o 0

LRTA*

* robot is guaranteed to reach goal in finite
number of steps if:

— all costs are bounded from below with A >0

— graph is of finite size and there exists a finite-cost
path to the goal

— all actions are irreversible

* Extension: Expand N steps

2/27/2012

16

