
2/27/2012

1

Path/Motion Planning III

Examples in this lecture from Max
Likhachev

Two related extensions
1. Online/incremental:

• World model changes as the path from start
to goal is executed

• Naïve approach: Replan from scratch every
time there is a change (!)

2/27/2012

2

Two related extensions
2. Anytime:
• Must be able to work with a sound path from

start to goal within time T (even if not optimal)
• Can update path as time passes
• Get sound path at anytime
• Get optimal path eventually

• Back to “simple” discrete setup for this lecture
(for a while)

• Discrete grid or graph of discrete states

c(s,s’) =
• Infinity if blocked cell
• Distance or traversal cost otherwise

2/27/2012

3

A*
• ComputePath function

• while(sgoal is not expanded)

– remove s with the smallest [f(s) = g(s)+h(s)]from
OPEN;

– for every successor s’ of s

• if g(s’) > g(s) + c(s,s’)
– g(s’) = g(s) + c(s,s’)

– insert s’ into OPEN

g(s)
sstart sgoal

s
s’

h(s)

Values g(.) have changed only
in a local area.
Can we reuse the old values
and repair the path?

2/27/2012

4

A*: Reusing previous values
• v(s) = infinite

• ComputePath function

• while(sgoal is not expanded)

– remove s with the smallest [f(s) = g(s)+h(s)]from
OPEN;

– v(s) = g(s)

– for every successor s’of s

• if g(s’) > g(s) + c(s,s’)
– g(s’) = g(s) + c(s,s’)

– insert s’ into OPEN

• During A*, a node s’ must satisfy:
– g(s’) = min s’’ pred(s’) v(s’’) + c(s’’,s’)

• If v(s) > g(s) then s is inconsistent with its neighbors (over-
consistent)

• Property:
• The OPEN list is the set of over-consistent nodes
• A* expands overconsistent states in the order of f(.) = g(.) +

h(.)

g(s”)
sstart

s”
s’

2/27/2012

5

A*: Reusing previous values
• v(s) = infinite

• OPEN = set of states such that v(s) > g(s)

• ComputePathReuse function

• while(sgoal is not expanded)
– remove s with the smallest [f(s) = g(s)+h(s)]from

OPEN;

– v(s) = g(s)

– insert s into CLOSED;

– for every successor s’ of s such that s’ not in
CLOSED
• if g(s’) > g(s) + c(s,s’)

– g(s’) = g(s) + c(s,s’)

– insert s’ into OPEN

• g(s) = min t pred(s) v(t) + c(t,s)

• OPEN = s such that v(s) > g(s)

2/27/2012

6

2/27/2012

7

Example: Repeated weighted A*

• Idea:

– First plan with heuristic eh(.) instead of h(.)

– Choose e large  Few expansions  Really fast

– Progressively decrease e

• Key insight from previous slides: Can do that
without recomputing all the values from
scratch for each e

Weighted A*

• ComputePathReuse

• while(sgoal is not expanded)

– remove s with the smallest [f(s) = g(s)+eh(s)]from
OPEN;

– v(s) = g(s)

– insert s into CLOSED;

– for every successor s’ of s such that s’ not in CLOSED

• if g(s’) > g(s) + c(s,s’)
– g(s’) = g(s) + c(s,s’)

– insert s’ into OPEN

New
conditional

2/27/2012

8

ARA*: Anytime Repairing A*
• OPEN = set of over-consistent states v(s) > g(s)

• ComputePath function

• while(sgoal is not expanded)

– remove s with the smallest [f(s) = g(s)+eh(s)]from
OPEN;

– v(s) = g(s)

– insert s into CLOSED;

– for every successor s’ of s such that s’ not in
CLOSED

• if g(s’) > g(s) + c(s,s’)
– g(s’) = g(s) + c(s,s’)

– insert s’ into OPEN

Example
No reuse:

With reuse:

2/27/2012

9

• This takes care of the inconsistent nodes such
that v(s) > g(s)

• What if v(s) < g(s) ?

• Can happen if edge cost changes

• Solution:

– Set v(s) to infinity

– Propagate through connected nodes

4

5

2/27/2012

10

OPEN =
{S3,S1,Sgoal}

2/27/2012

11

Incremental/Online planning: D*

• Plan from goal to start so that most of the g(.)
remain the same

g(s) =
path cost to goal

gstart ggoal

2/27/2012

12

sstart sgoal

Start executing path

sstart sgoal

Update world:
Mark inconsistent state

sstart

sgoal

Repair plan to new sstart

D* Lite

• until goal is reached:

– ComputePathReuse()

– follow the path until world is updated with new
information

– update the corresponding transition costs

– set sstart to the current state of the agent

• Information-complete, information-optimal

2/27/2012

13

First A* search

Second A* search Second D*-Lite search

First D*-Lite search

Comparison

Anytime D*
• set e to large value

• until goal is reached

– ComputePathReuse() (weighted e A*)

– Follow the path until world is updated with new
information

– Update the corresponding edge costs

– Set sstart to the current state of the agent

– If “significant” changes were observed

• increase e or replan from scratch

– else

• decrease e
No miracle: If too many changes we might

as well recompute from scratch

2/27/2012

14

Controlling computation: Agent-
centered search

• Extreme case:

– Constant (small) amount of computation

– Don’t even try to plan to the goal

– Just plan 1 step ahead

Controlling computation:
Agent-centered search

Local minimum problem:

sstart = argmin s Є succ(sstart) c(sstart, s) + h(s)

2/27/2012

15

Controlling computation:
Agent-centered search

• Solution:

• Update h(sstart) = min s Єsucc(sstart)c(sstart, s) + h(s)

Learning Real-Time A* (LRTA*)

• sstart = current position

1. Update: h(sstart) = min s Єsucc(sstart)c(sstart, s) + h(s)

2. Move: sstart = argmins Єsucc(sstart)c(sstart, s) + h(s)

2/27/2012

16

LRTA*

• robot is guaranteed to reach goal in finite
number of steps if:

– all costs are bounded from below with Δ > 0

– graph is of finite size and there exists a finite-cost
path to the goal

– all actions are irreversible

• Extension: Expand N steps

