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Path/Motion Planning

Movies/demos provided by James Kuffner and Howie Choset + 
Examples from J.C. latombe’s and Steve Lavalle’s book

Excellent reference:
S. Lavalle. Planning algorithms. Cambridge University Press. 2007.
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Example from James Kuffner

Path/Motion Planning

• Application of earlier search approaches 
(A*, stochastic search, etc.)

• Search in geometric structures

• Spatial reasoning

• Challenges:
– Continuous state space

– Large dimensional space
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Biology

Process Engineering/Design

Animation/
Virtual actors

Robotics is only 
(a small) one of 
many 
applications of 
spatial 
reasoning

(Kineo)

Approach

• Convert the problem to a search problem 
through some space (e.g., using A*)

• What is the state space?

• How to represent it (continuous 
discrete)?
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Simple approach: State = position 

Start

Goal

Moving a point through space 
around obstacles

State space: (x,y)

Moving a piano through space 
around obstacles

State space: (x,y,)

Degrees of Freedom



5

Examples

Allowed to move only 
in x and y: 2DOF

Allowed to move in x
and y and to rotate: 
3DOF (x,y,)

• Configuration space C = set of values of q corresponding to legal 
configurations of the robot
• Defines the set of possible parameters (the search space) and the set of 
allowed paths
• Assumptions:

• We have defined a distance in C-space
• We have defined a notion of “volume” in C-space (formally, a measure)

Configuration Space (C-Space)
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Large C-Space Dimension

~13,000 DOFs !!!

Millipede-
like robot 
(S. Redon)

Start

Goal

Moving a point through space 
around obstacles

State space: (x,y)

A valid path is when the point is 
never inside an obstacle

Moving a piano through space around 
obstacles

State space: (x,y,)

A valid path is when the piano never 
intersect the obstacles 

Sounds very expensive: We need to 
1. Transform piano to its shape for each 
2. Check for intersection with the 

obstacles
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Free Space: Point

• Cfree = {Set of parameters q for which 
A(q) does not intersect obstacles}
• For a point robot in the 2-D plane: R2

minus the obstacle regions
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Free Space: Symmetric Robot

• We still haveC = R2 because 
orientation does not matter
• Reduce the problem to a point 
robot by expanding the obstacles by 
the radius of the robot

Free Space: Non-Symmetric Robot

• The configuration space is now three-
dimensional (x,y,)
• We need to apply a different obstacle 
expansion for each value of 
• We still reduce the problem to a point 
robot by expanding the obstacles
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Formal definition of the free 
space trick (simple case)
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

x

y

More Complex C-Spaces
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Path/Motion Planning Problem

system

Any Formal Guarantees? Generic 
Piano Movers Problem
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Completeness

• Important definition:

• An algorithm is complete if:
– If a path exists, it finds it in finite time

– If a path does not exist, it returns in finite time

• Sound if: 
– Guaranteed to never cross an obstacle

• Less important:
– Optimal if guaranteed to find the shortest path 

(if it exists)

Approaches

– Cell decomposition

– Roadmaps

– Sampling Techniques

(RRT, DRT, PRM,..)

– On-line algorithms

D*, ARA*,..

In all cases: Reduce the 
intractable problem in 
continuous C-space to a 
tractable problem in a 
discrete space  Use 
all of the techniques we 
know (A*, stochastic 
search, etc.)
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Approaches

– Cell decomposition

– Roadmaps

– Sampling Techniques

(RRT, DRT, PRM,..)

– On-line algorithms

D*, ARA*,..

Decompose the 
space into cells so 
that any path inside a 
cell is obstacle free

Approximate Cell Decomposition

• Define a discrete grid in C-Space
• Mark any cell of the grid that intersects Cobs as 

blocked
• Find path through remaining cells by using (for 

example) A* (e.g., use Euclidean distance as 
heuristic)

• Cannot be complete as described so far. Why?
• Is it optimal?
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Approximate Cell Decomposition

• Cannot find a path in this case even though one exists
• Solution:
• Distinguish between 

– Cells that are entirely contained in Cobs (FULL) and
– Cells that partially intersect Cobs (MIXED)

• Try to find a path using the current set of cells
• If no path found:

– Subdivide the MIXED cells and try again with the new set of 
cells
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Is it complete now?

• An algorithm is resolution complete when:
– If a path exists, it finds it in finite time

– If a path does not exist, it returns in finite time

Start Goal

Start Goal
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Optimality issues
• We took care of completeness
• How about optimality? Why is it not optimal?

• To improve we’ll need the notion of visibility: s is 
visible by s’ iff the line between s and s’ does not 
intersect obstacles

• Consecutive states on a sound path are visible from 
each other
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S

G

Solution I
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Solution I

Example: A. Botea, M. Muller, J. Schaeffer. Near optimal hierarchical 
path-finding. Journal of game development. 2004.

S

G

• Cannot be smoothed!

• Can we do something different while
searching
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Solution II
• Allow parents that are non-neighbors in the grid (but 

visible) to be used during search

Nash, Daniel, Koenig, Felner. Theta*: Any-Angle Path 
Planning on Grids. AAAI 2007.

S’S
S’S

parent(S)

Solution II
• Why does it work? Why does it give a lower cost path?
• Note: This approximates searching through the entire 

visibility graph of the grid nodes (too expensive to be 
practical)

Nash, Daniel, Koenig, Felner. Theta*: Any-Angle Path 
Planning on Grids. AAAI 2007.
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Solution III

• Idea: Allow crossing cell edges 

Solution III

݃ ݏ ൌ ݉݅݊௦ᇲሺ݃ ᇱݏ ൅ ܿ ,ݏ ᇱݏ ሻ

Intractable: need to search over all of the s’

Approximation:  ݃ ᇱݏ ൎ ݃ݕ ଶݏ ൅ 1 െ ݕ ݃ሺݏଵሻ

݃ ଶݏ

݃ ଵݏ
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݃ ᇱݏ ൎ min
௫,௬

ݔ ൅ 1 െ ݔ ଶ ൅ ଶݕ ൅ ݃ݕ ଶݏ ൅ 1 െ ݕ ݃ሺݏଵሻ

݃ ଶݏ

݃ ଵݏ

150 × 60 grid
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Does it make a difference?
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Approaches

– Cell decomposition

– Roadmaps

– Sampling Techniques

(RRT, DRT, PRM,..)

– On-line algorithms

D*, ARA*,..

Roadmaps
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First “obvious” approach (but not practical)
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• Assuming polygonal obstacles: It looks like the shortest path 
is a sequence of straight lines joining the vertices of the 
obstacles.
• This is always true  Idea:

• Link the vertices into a graph
• Search (e.g., A*) through that graph
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Visibility Graphs (Lozano-Perez et al.)

• Visibility graph G = set of unblocked lines between 
vertices of the obstacles + qstart and qgoal

• A node P is linked to a node P’ if P’ is visible from P
• Solution = Shortest path in the visibility graph

Note important concept for later: visibility 
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Construction: Sweep Algorithm

• Sweep a line originating at each vertex
• Record those lines that end at visible vertices

Complexity

• N = total number of vertices of the 
obstacle polygons
• Naïve: O(N3)
• Sweep: O(N2 log N)
• Optimal: O(N2)
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Why not practical?

• Shortest path but:
– Tries to stay as close as possible to obstacles

– Any execution error will lead to a collision

– Complicated in >> 2 dimensions

• We may not care about strict optimality so 
long as we find a safe path. Staying away 
from obstacles is more important than 
finding the shortest path

• Need to define other types of “roadmaps”

Skeletons

• Given a set of data points in the plane:
– Color the entire plane such that the color of any point 

in the plane is the same as the color of its nearest 
neighbor
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Skeletons

• Voronoi diagram = The set of line segments 
separating the regions corresponding to different 
colors

• Line segment = points equidistant from 2 data points
• Vertices = points equidistant from > 2 data points
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Skeletons

• Voronoi diagram = The set of line segments 
separating the regions corresponding to different 
colors

• Line segment = points equidistant from 2 data points
• Vertices = points equidistant from > 2 data points

Voronoi Diagrams

• Complexity (in the plane):
• O(N log N) time
• O(N) space
(See for example http://www.cs.cornell.edu/Info/People/chew/Delaunay.html for 
an interactive demo)
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Beyond Points

• Edges are combinations of straight line 
segments and segments of quadratic curves

• Straight edges: Points equidistant from 2 lines
• Curved edges: Points equidistant from one 

corner and one line
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Voronoi Diagrams (Polygons)

• Key property: The points on the edges of the skeleton 
are the furthest from the obstacles
• Idea: Construct a path between qstart and qgoal by 
following edges on the skeleton
• (Use the skeleton as a roadmap)

Voronoi Diagrams: Planning

• Find the point q*start of the graph closest 
to qstart

• Find the point q*goal of the graph closest 
to qgoal

• Compute shortest path from q*start to 
q*goal on the graph
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Example

• Complete? Optimal?

Example
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Weaknesses

• Difficult to compute in higher dimensions or non-
polygonal worlds

• Approximate algorithms exist

• Use of skeleton is not necessarily the best 
heuristic (“stay away from obstacles”)  Can lead 
to paths that are much too conservative

• Can be unstable  Small changes in obstacle 
configuration can lead to large changes in the 
diagram
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Approximate Cell Decomposition: 
Limitations


