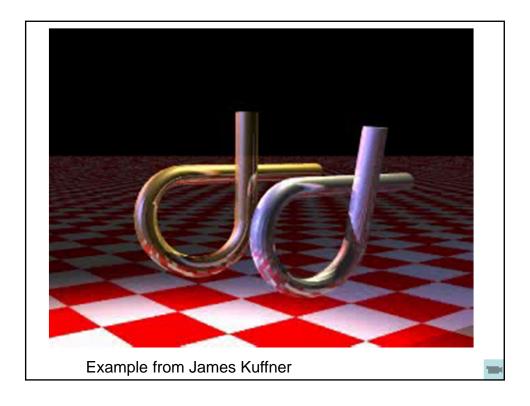
## Path/Motion Planning

Movies/demos provided by James Kuffner and Howie Choset + Examples from J.C. latombe's and Steve Lavalle's book Excellent reference:

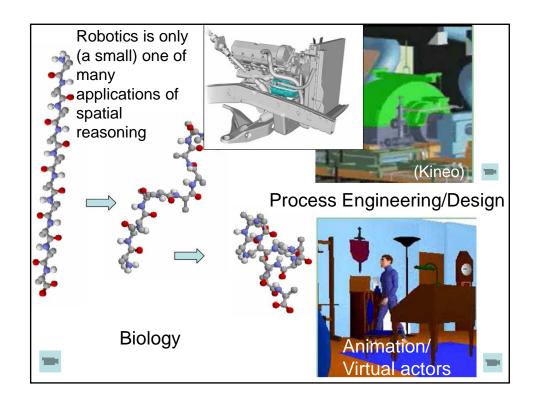
S. Lavalle. Planning algorithms. Cambridge University Press. 2007.





### Path/Motion Planning

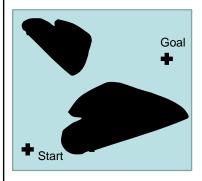
- Application of earlier search approaches (A\*, stochastic search, etc.)
- Search in geometric structures
- Spatial reasoning
- Challenges:
  - Continuous state space
  - Large dimensional space



### Approach

- Convert the problem to a search problem through some space (e.g., using A\*)
- What is the state space?
- How to represent it (continuous → discrete)?

### Simple approach: State = position



Moving a point through space around obstacles

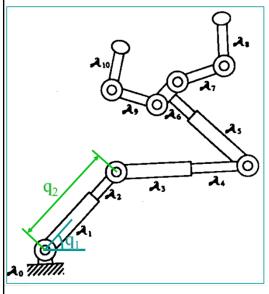
State space: (x,y)



Moving a piano through space around obstacles

State space:  $(x,y,\theta)$ 

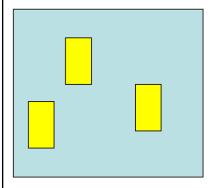
### Degrees of Freedom



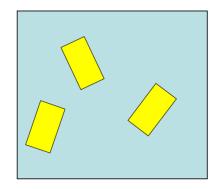
- The geometric configuration is defined by p degrees of freedom (DOF)
- Assuming p DOFs, the geometric configuration A is defined by p variables:

 $A(\mathbf{q})$  with  $\mathbf{q} = (q_1, ..., q_p)$ 



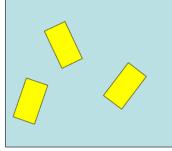


Allowed to move only in *x* and *y*: 2DOF

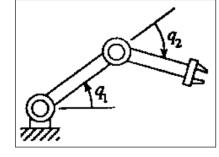


Allowed to move in x and y and to rotate: 3DOF  $(x,y,\theta)$ 

### **Configuration Space (C-Space)**

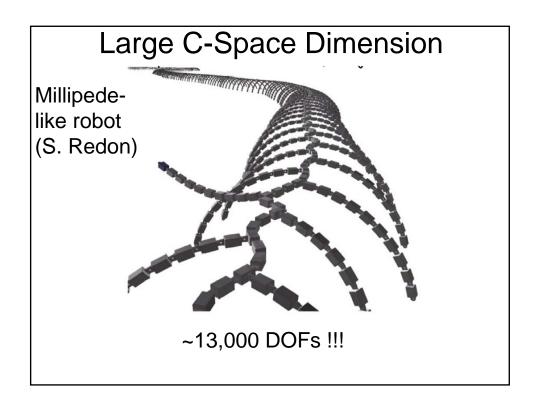


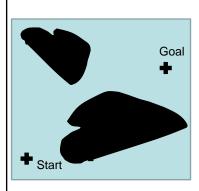
 $q = (x,y,\theta)$  $\mathbb{C} = \Re^2 x \text{ set of 2-D rotations}$ 



 $\mathbf{q} = (q_1, q_2)$  $\mathbb{G} = 2\text{-D rotations } \times 2\text{-D rotations}$ 

- Configuration space  $\mathcal{C}$  = set of values of  $\boldsymbol{q}$  corresponding to legal configurations
- Defines the set of possible parameters (the search space) and the set of allowed paths
- Assumptions:
  - We have defined a distance in C-space
  - We have defined a notion of "volume" in C-space (formally, a measure)





Moving a point through space around obstacles

State space: (x,y)

A valid path is when the point is never inside an obstacle



Moving a piano through space around obstacles

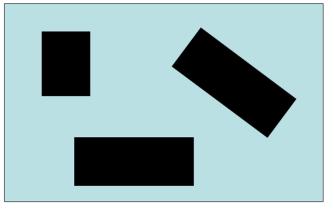
State space:  $(x,y,\theta)$ 

A valid path is when the *piano never intersect* the obstacles

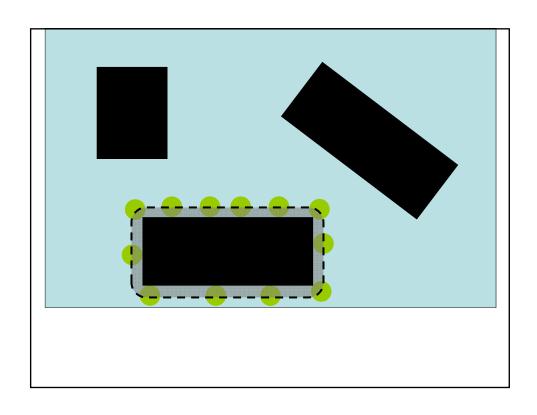
Sounds very expensive: We need to

- 1. Transform piano to its shape for each
- 2. Check for intersection with the obstacles

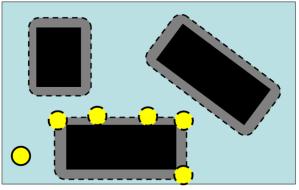
### Free Space: Point



- $\mathcal{G}_{\text{free}}$  = {Set of parameters  $\boldsymbol{q}$  for which  $A(\boldsymbol{q})$  does not intersect obstacles}
- For a point robot in the 2-D plane: R<sup>2</sup> minus the obstacle regions

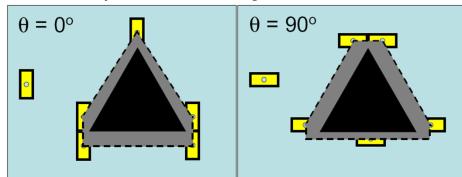


### Free Space: Symmetric Robot



- We still have  $T = R^2$  because orientation does not matter
- Reduce the problem to a point robot by expanding the obstacles by the radius of the robot

### Free Space: Non-Symmetric Robot

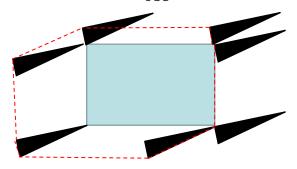


- The configuration space is now three-dimensional  $(x,y,\theta)$
- We need to apply a different obstacle expansion for each value of  $\boldsymbol{\theta}$
- We still reduce the problem to a point robot by expanding the obstacles

# Formal definition of the free space trick (simple case)

· Translation case: Minkowski difference

$$X \ominus Y = \{x - y; x \in X, y \in Y\}$$
  
 $C_{obs} = O \ominus A$ 

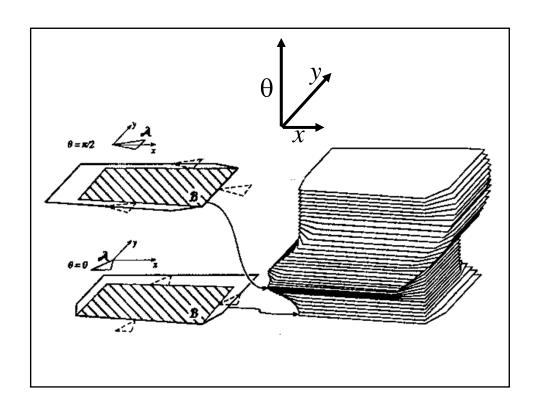


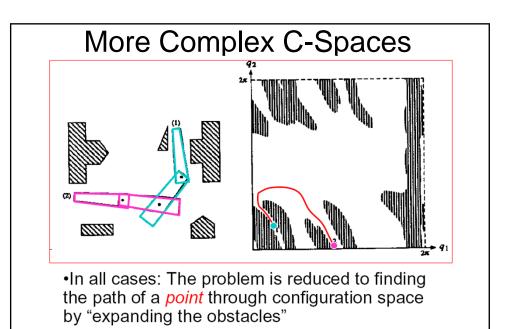
- · All obstacles can be represented as unions of convex shapes
- Efficient algorithm for convex obstacles

- Property:
  - Free path of object through C-O is equivalent to
  - Free path of a point through

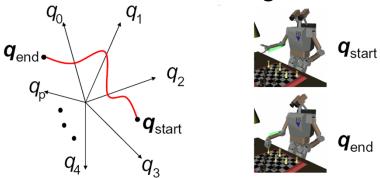
$$C_{free} = C - (O \ominus A)$$

We need to worry only about finding a path for a point





### Path/Motion Planning Problem



- A = system with p degrees of freedom in 2-D or 3-D
- CB = Set of obstacles
- A configuration q is legal if it does not cause to intersect the obstacles
- Given start and goal configurations ( $q_{\text{start}}$  and  $q_{\text{goal}}$ ), find a continuous sequence of legal configurations from  $q_{\text{start}}$  to  $q_{\text{goal}}$ .
- Report failure if not path is found

# Any Formal Guarantees? Generic Piano Movers Problem



- Formal Result (but not terribly useful for practical algorithms):
  - − p: Dimension of ℂ
  - $\emph{m}$ : Number of polynomials describing  $\mathfrak{T}_{\text{free}}$
  - d: Max degree of the polynomials
- A path (if it exists) can be found in time exponential in p and polynomial in m and d

[From J. Canny. "The Complexity of Robot Motion Planning Plans". MIT Ph.D. Dissertation. 1987]

### Completeness

- Important definition:
- An algorithm is complete if:
  - If a path exists, it finds it in finite time
  - If a path does not exist, it returns in *finite* time
- Sound if:
  - Guaranteed to never cross an obstacle
- Less important:
  - Optimal if guaranteed to find the shortest path (if it exists)

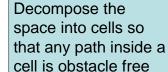
### Approaches

- -Cell decomposition
- -Roadmaps
- (RRT, DRT, PRM,..)
- On-line algorithms D\*, ARA\*,...

In all cases: Reduce the intractable problem in -Sampling Techniques continuous C-space to a tractable problem in a discrete space → Use all of the techniques we know (A\*, stochastic search, etc.)

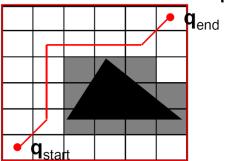
### Approaches

Cell decomposition

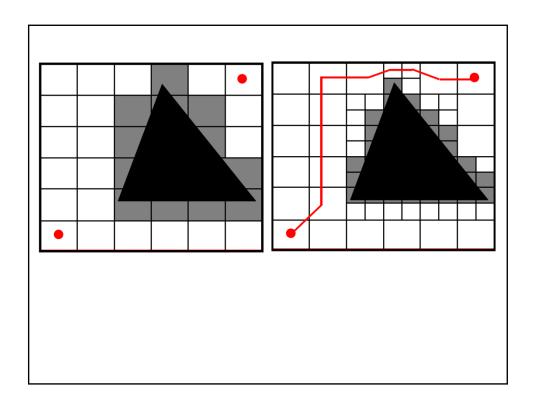


- -Roadmaps
- -Sampling Techniques (RRT, DRT, PRM,..)
- -On-line algorithms D\*, ARA\*,..

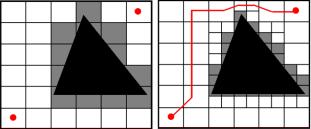
### Approximate Cell Decomposition



- Define a discrete grid in C-Space
  Mark any cell of the grid that intersects \$\mathcal{C}\_{obs}\$ as blocked
- Find path through remaining cells by using (for example) A\* (e.g., use Euclidean distance as heuristic)
- Cannot be complete as described so far. Why?
- Is it optimal?

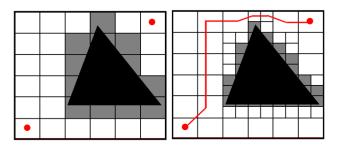


### Approximate Cell Decomposition

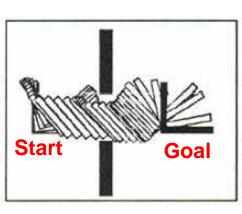


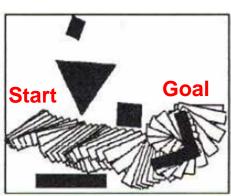
- Cannot find a path in this case even though one exists
- Solution:
- Distinguish between
  - Cells that are entirely contained in  $\mathfrak{T}_{\text{obs}}(\textit{FULL})$  and
  - Cells that partially intersect  $\mathcal{T}_{obs}$  (MIXED)
- Try to find a path using the current set of cells
- If no path found:
  - Subdivide the MIXED cells and try again with the new set of cells

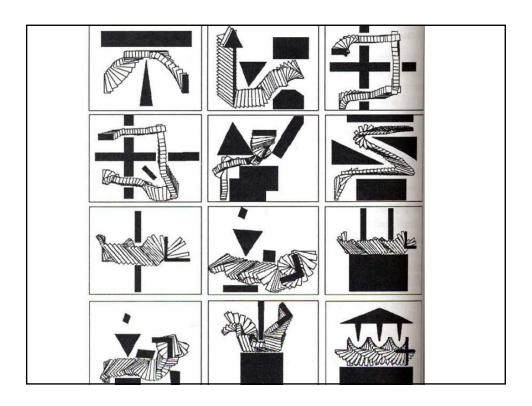
### Is it complete now?



- An algorithm is *resolution complete* when:
  - If a path exists, it finds it in finite time
  - If a path does not exist, it returns in finite time

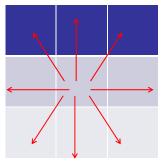




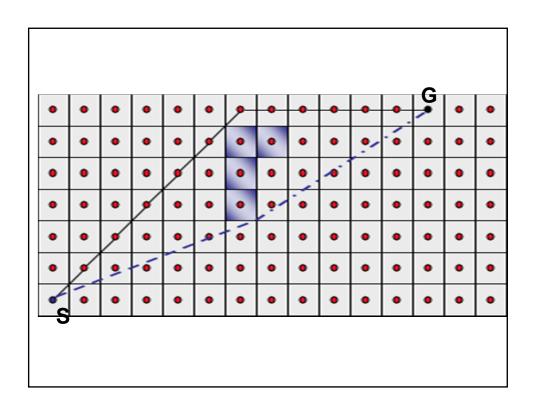


### Optimality issues

- We took care of completeness
- How about optimality? Why is it not optimal?

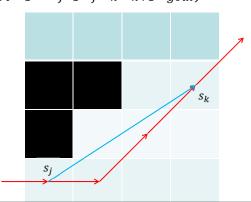


- To improve we'll need the notion of visibility: s is visible by s'iff the line between s and s'does not intersect obstacles
- Consecutive states on a sound path are visible from each other



- Solution I

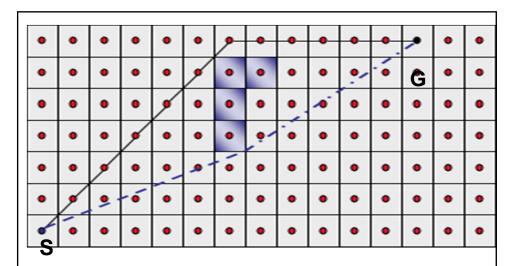
   Allow connection to further states than the neighbors on the grid
- Key observation:
  - If  $(s_{start}, s_1, ..., s_{goal})$  is a valid path
  - If  $s_j$  is visible from  $s_k$
  - Then  $(s_{start}, s_1, \dots s_{j-1}, s_j, s_k, s_{k+1}, s_{goal})$  is a valid path



### Solution I

- A\* post-processing (A\* smoothing)
- Iterate starting at  $s_{qoal}$
- If parent(parent(current state) is visible from current state
  - Delete parent(current state)
- Else
  - current state ← parent(current state)

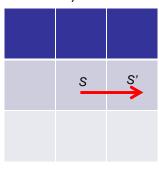
Example: A. Botea, M. Muller, J. Schaeffer. Near optimal hierarchical path-finding. Journal of game development. 2004.



- Cannot be smoothed!
- Can we do something different while searching

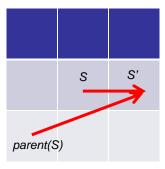
### Solution II

• Allow parents that are non-neighbors in the grid (but visible) to be used *during search* 



Standard A\* g(s') = g(s) + c(s, s')

Insert s' with estimate g(s') = g(s) + c(s, s') + h(s')

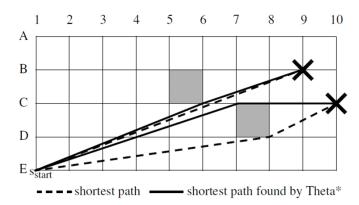


Theta\*
IF parent(s) is visible from s' g(s') = g(parent(s)) + c(parent(s), s') + h(s')

Nash, Daniel, Koenig, Felner. Theta\*: Any-Angle Path Planning on Grids. AAAI 2007.

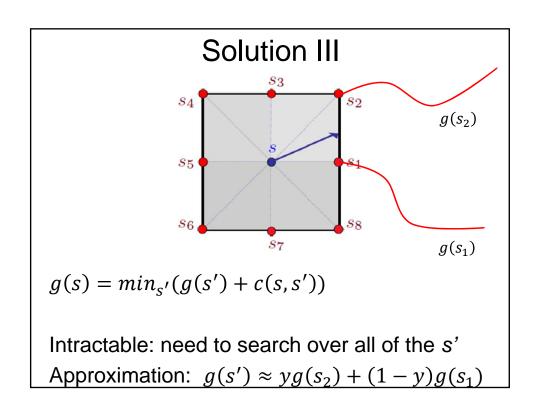
### Solution II

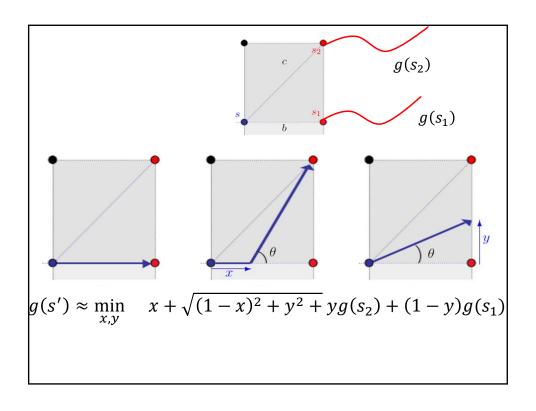
- Why does it work? Why does it give a lower cost path?
- Note: This approximates searching through the entire visibility graph of the grid nodes (too expensive to be practical)

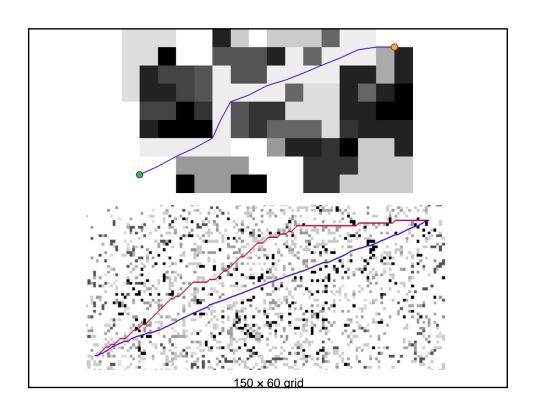


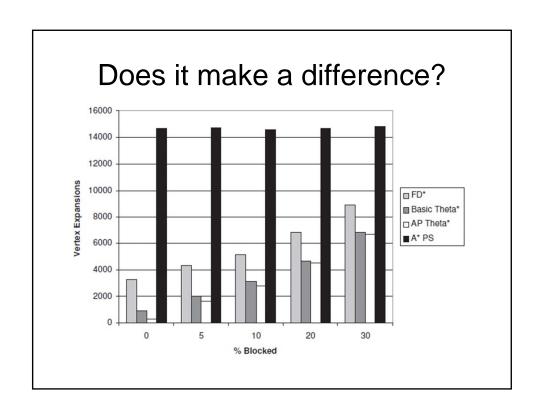
Nash, Daniel, Koenig, Felner. Theta\*: Any-Angle Path Planning on Grids. AAAI 2007.













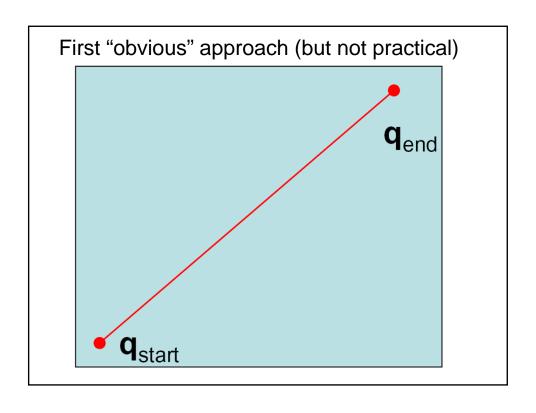
### Approaches

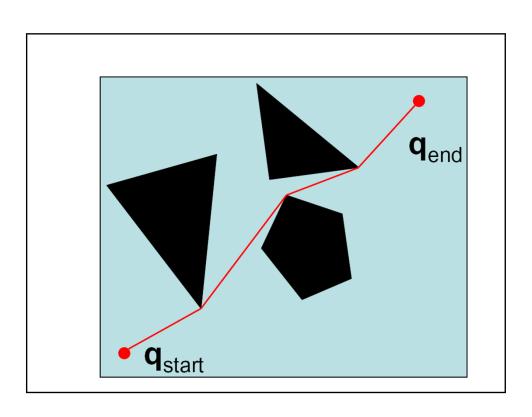
- -Cell decomposition
- -Roadmaps
- -Sampling Techniques (RRT, DRT, PRM,..)
- On-line algorithmsD\*, ARA\*,..

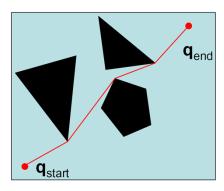
### Roadmaps



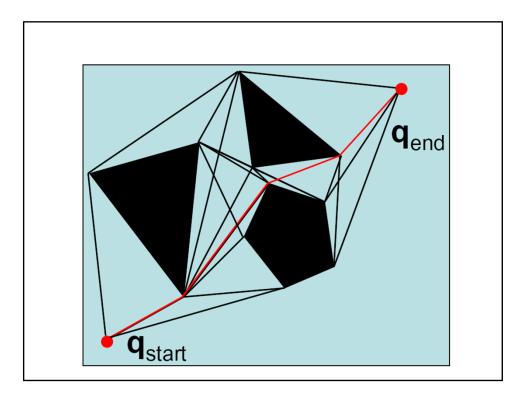
- General idea:
  - Avoid searching the entire space
  - Pre-compute a (hopefully small) graph (the roadmap) such that staying on the "roads" is guaranteed to avoid the obstacles
  - Find a path between  $\mathbf{q}_{\text{start}}$  and  $\mathbf{q}_{\text{goal}}$  by using the roadmap



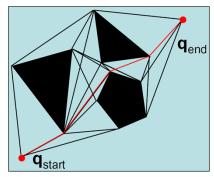




- Assuming polygonal obstacles: It looks like the shortest path is a sequence of straight lines joining the vertices of the obstacles.
- This is always true → Idea:
  - Link the vertices into a graph
  - Search (e.g., A\*) through that graph

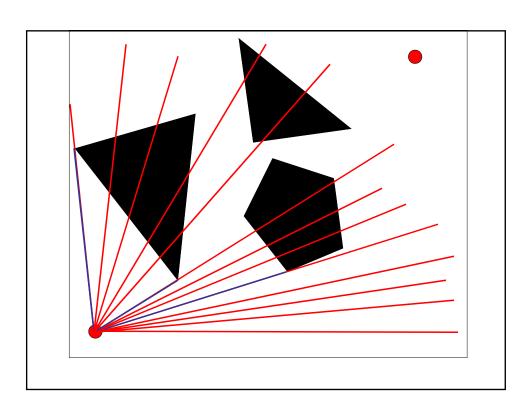


### Visibility Graphs (Lozano-Perez et al.)

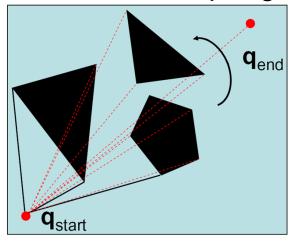


- Visibility graph *G* = set of unblocked lines between vertices of the obstacles +  $\mathbf{q}_{\text{start}}$  and  $\mathbf{q}_{\text{goal}}$ • A node P is linked to a node P' if P' is visible from P
- Solution = Shortest path in the visibility graph

Note important concept for later: visibility

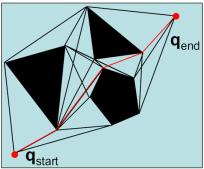


### Construction: Sweep Algorithm



- Sweep a line originating at each vertex
- Record those lines that end at visible vertices

### Complexity



• *N* = total number of vertices of the obstacle polygons

Naïve: O(№)

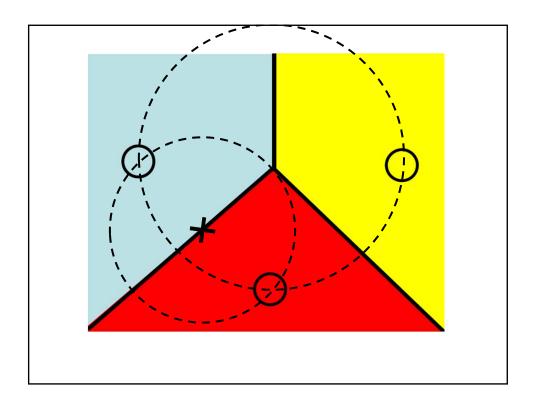
• Sweep: O(N<sup>2</sup> log N)

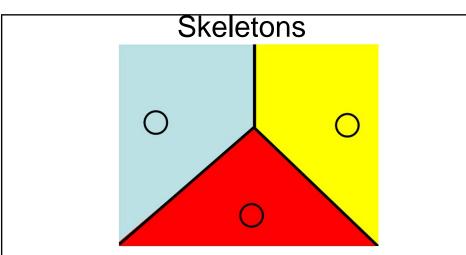
• Optimal: O(N2)

### Why not practical?

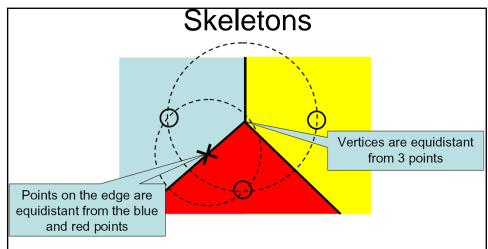
- Shortest path but:
  - Tries to stay as close as possible to obstacles
  - Any execution error will lead to a collision
  - Complicated in >> 2 dimensions
- We may not care about strict optimality so long as we find a safe path. Staying away from obstacles is more important than finding the shortest path
- Need to define other types of "roadmaps"

# Skeletons O Given a set of data points in the plane: Color the entire plane such that the color of any point in the plane is the same as the color of its nearest neighbor

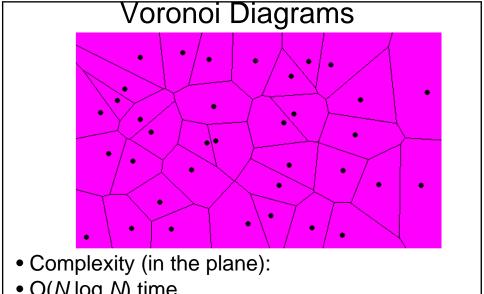




- Voronoi diagram = The set of line segments separating the regions corresponding to different colors
  - Line segment = points equidistant from 2 data points
  - Vertices = points equidistant from > 2 data points

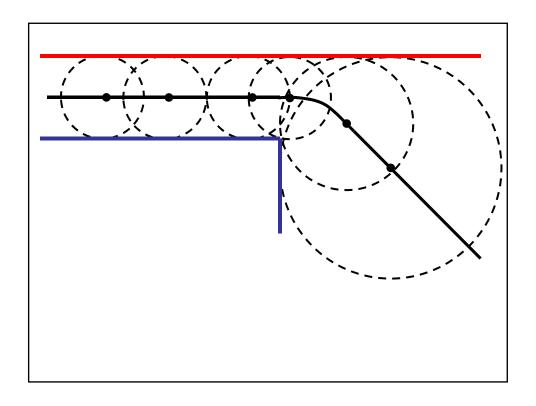


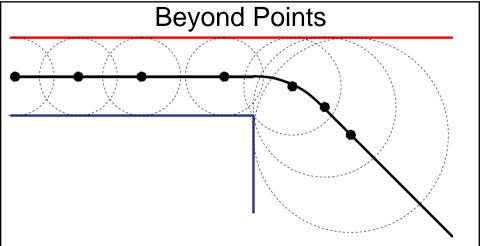
- Voronoi diagram = The set of line segments separating the regions corresponding to different colors
  - Line segment = points equidistant from 2 data points
  - Vertices = points equidistant from > 2 data points



- O(N log N) time
- O(N) space

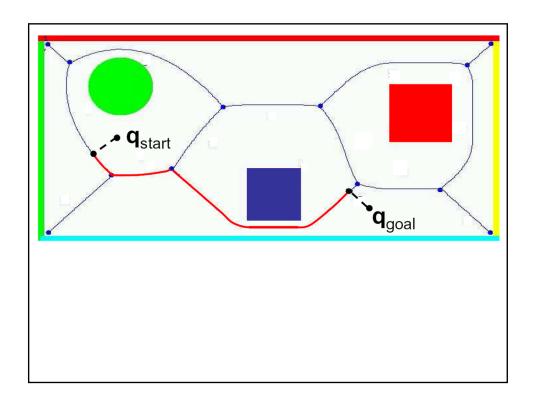
(See for example http://www.cs.cornell.edu/Info/People/chew/Delaunay.html for an interactive demo)



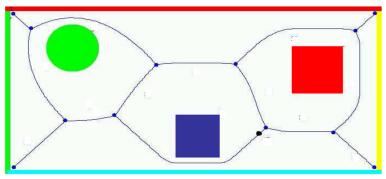


- Edges are combinations of straight line segments and segments of quadratic curves
- Straight edges: Points equidistant from 2 lines
- Curved edges: Points equidistant from one corner and one line



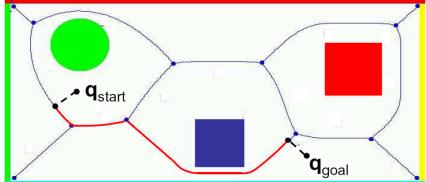


### Voronoi Diagrams (Polygons)

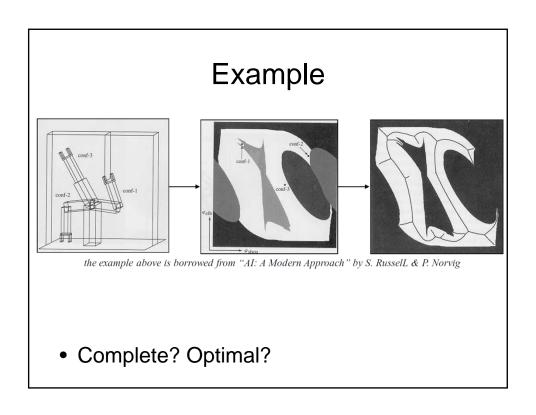


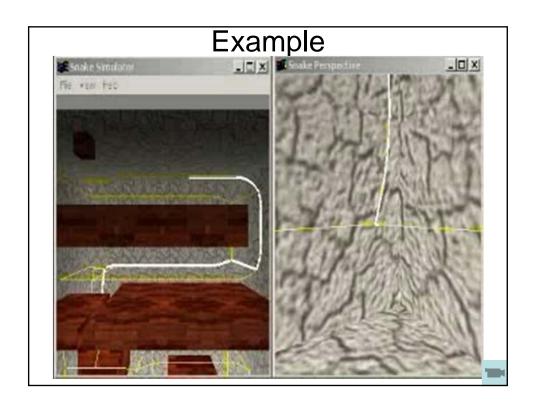
- Key property: The points on the edges of the skeleton are the *furthest* from the obstacles
- $\bullet$  Idea: Construct a path between  $\mathbf{q}_{\text{start}}$  and  $\mathbf{q}_{\text{goal}}$  by following edges on the skeleton
- (Use the skeleton as a roadmap)

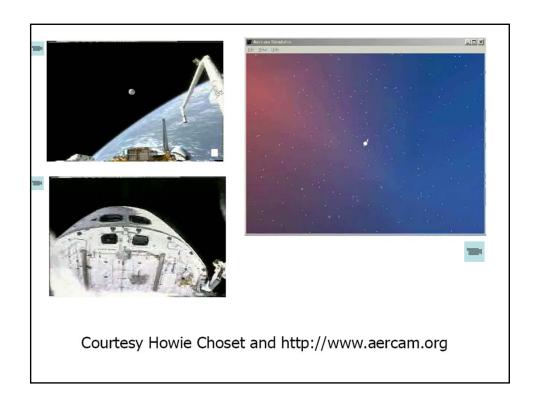




- Find the point q\*<sub>start</sub> of the graph closest to q<sub>start</sub>
- Find the point  $\mathbf{q^*}_{goal}$  of the graph closest to  $\mathbf{q}_{goal}$
- Compute shortest path from q\*<sub>start</sub> to q\*<sub>goal</sub> on the graph







### Weaknesses

- Difficult to compute in higher dimensions or nonpolygonal worlds
- Approximate algorithms exist
- Use of skeleton is not necessarily the best heuristic ("stay away from obstacles") Can lead to paths that are much too conservative
- Can be unstable → Small changes in obstacle configuration can lead to large changes in the diagram

# Approximate Cell Decomposition: Limitations

- Good:
  - Limited assumptions on obstacle configuration
  - Approach used in practice
  - Find obvious solutions quickly
- · Bad:
  - No clear notion of optimality ("best" path)
  - Trade-off completeness/computation
  - Still difficult to use in high dimensions (need to compute  $C_{frag}$  explicitly!)