Path/Motion Planning

Movies/demos provided by James Kuffner and Howie Choset +
Examples from J.C. latombe’s and Steve Lavalle’s book

Excellent reference:
S. Lavalle. Planning algorithms. Cambridge University Press. 2007.

Example from James Kuffner

Path/Motion Planning

» Application of earlier search approaches
(A*, stochastic search, etc.)

» Search in geometric structures
e Spatial reasoning

» Challenges:
— Continuous state space
— Large dimensional space

Robotics is only
(a small) one of
, many
applications of
spatial

Anirhation/
Virtual actors

Approach

« Convert the problem to a search problem
through some space (e.g., using A*)

* What is the state space?

* How to represent it (continuous -
discrete)?

Simple approach: State = position

Goal

+ Start
Moving a point through space Moving a piano through space
around obstacles around obstacles
State space: (X,y) State space: (X,y,0)

Degrees of Freedom

» The geometric configuration

is defined by p degrees of
freedom (DOF)
» Assuming p DOFs, the
geometric configuration A

is defined by p variables:

A(q) with g = (g4.....q,)

Examples

0@0

Allowed to move only Allowed to move in x
in x and y: 2DOF and y and to rotate:
3DOF (x,y,0)

Configuration Space (C-Space)

0@0

q=(xy.0) q=1(9.9;) _
T -2 xset of 2-D rotations T = 2-D rotations x 2-D rotations
« Configuration space G = set of values of q corresponding to legal
configurations

« Defines the set of possible parameters (the search space) and the set of
allowed paths
» Assumptions:

» We have defined a distance in C-space

« We have defined a notion of “volume” in C-space (formally, a measure)

Millipede-
like robot
(S. Redon)

~13,000 DOFs It

Goal

+ Start

Moving a piano through space around
Moving a point through space obstacles
around obstacles

State space: (x,y,0)
State space: (X,y)
A valid path is when the piano never
Avalid path is when the point is intersect the obstacles
never inside an obstacle
Sounds very expensive: We need to
1. Transform piano to its shape for each
2. Check for intersection with the
obstacles

Free Space: Point

* Gyee = {Set of parameters g for which

A(q) does not intersect obstacles}
* For a point robot in the 2-D plane: R?
minus the obstacle regions

Free Space: Symmetric Robot

» We still haveG= R? because
orientation does not matter

* Reduce the problem to a point
robot by expanding the obstacles by
the radius of the robot

Free Space: Non-Symmetric Robot

0 =0° 0 = 90°

i

» The configuration space is now three-
dimensional (x,y,0)

* We need to apply a different obstacle
expansion for each value of 6

» We still reduce the problem to a point
robot by expanding the obstacles

Formal definition of the free

space trick (simple case)
* Translation case: Minkowski difference
XoY={x—-y;xeX,yeY}
Cops =00 A

+ All obstacles can be represented as unions of convex shapes
« Efficient algorithm for convex obstacles

» Property:

— Free path of object through C-O is equivalent to

— Free path of a point through
Cfree =C—-(0 @A)

We need to worry only about finding a path for

a point

A

More Complex C-Spaces

AW

RN

+In all cases: The problem is reduced to finding
the path of a point through configuration space
by “expanding the obstacles”

Free space construct generalizes but is much more complex = Motivation for
sampling techniques which do not require constructing sy, explicitly.

10

Path/Motion Planning Problem

qstart

qend

» A = system with p degrees of freedom in 2-D or 3-D

+ CB = Set of obstacles

» A configuration q is legal if it does not cause
to intersect the obstacles

+ Given start and goal configurations (g, and g,
find a continuous sequence of legal comr‘tguratlons
from qstan to qgoal

+ Report failure if not path is found

Any Formal Guarantees? Generic
Piano Movers Problem

4

» Formal Result (but not terribly useful for practical
algorithms):
— p: Dimension of C
— m: Number of polynomials describing Gy
— d: Max degree of the polynomials

» A path (if it exists) can be found in time
exponential in p and polynomial in m and d

[From J. Canny. “The Complexity of Robot Motion Planning Plans”. MIT Ph.D. Dissertation. 1987]

11

Completeness

Important definition:;

An algorithm is complete if:

— If a path exists, it finds it in finite time

— If a path does not exist, it returns in finite time
Sound if:

— Guaranteed to never cross an obstacle

Less important:

— Optimal if guaranteed to find the shortest path
(if it exists)

Approaches

—Cell decomposition
In all cases: Reduce the

—Roadmaps intractable problem in
—Sampling Techniques continuous C-space to a

tractable problem in a
(RRT’_ DRT, PRM"') discrete space = Use
—On-line algorithms aj| of the techniques we
D* ARAX*, .. know (A*, stochastic
search, etc.)

12

Approaches

—Cell decomposition s
—Roadmaps

—Sampling Techniques
(RRT, DRT, PRM,..)
—On-line algorithms

D*, ARA*,..

Decompose the
space into cells so
that any path inside a
cell is obstacle free

Approximate Cell Decomposition

qend

q sta

« Define a discrete grid in C-Space
» Mark any cell of the grid that intersects G, as

blocked

" A Téh AU e EERANIRRAR eHACe 48

eurist

« Cannot be complete as described so far. Why?

 Is it optimal?

13

Approximate Cell Decomposition

—0

V

° o

Cannot find a path in this case even though one exists
Solution:

Distinguish between

— Cells that are entirely contained in G, (FULL) and

— Cells that partially intersect G, (MIXED)

Try to find a path using the current set of cells

If no path found:

— Subdivide the MIXED cells and try again with the new set of
cells

14

Is it complete now?

4

« An algorithm is resolution complete when:

— If a path exists, it finds it in finite time

— If a path doesnot

urns in finite time

15

Optimality issues

* We took care of completeness
* How about optimality? Why is it not optimal?

/1N

» To improve we’ll need the notion of visibility: s is
visible by s’ iff the line between s and s’ does not
intersect obstacles

» Consecutive states on a sound path are visible from
each other

16

I
&)
o o o o o L —0—190190 19010 -8 L]
~
o o [e] o el ° ° ° L e, e L] o
e |o |9 | @O o |o|oe|o | o |0 |00 |e
L o L] o a ° e @ o o o ° a
=
o o o o | ol e o o o o L] o L]
1
-
o e e o o o a o (] o o o a
=t
—
o o o o o o o o o o o o o
(&

Solution |

* Allow connection to further states than the
neighbors on the grid

+ Key observation:
— If (Sstart:S1, > Sgoar) is @ valid path
— If s; is visible from s
— Then (ssmrt,sl, o Sj—1, sj,sk,skﬂ,sgoal) is a valid path

17

Solution |

A* post-processing (A* smoothing)
lterate starting at s;,4;

If parent(parent(current state) is visible
from current state

— Delete parent(current state)

Else
— current state €< parent(current state)

Example: A. Botea, M. Muller, J. Schaeffer. Near optimal hierarchical
path-finding. Journal of game development. 2004.

o |o|eo|eo|e|e ot o o 1010 1e
g
e | |9 |9o | @O O.'..,QG
e |eoe|e|e o |o]le|eo|eo|eo|e|e
e |e|e o|o|o|ele|o|eo|e|e
-/
o | e e|lo|sfoe|e|o|o oo e
-
o 3’.....'....
=1
-
o |o|o|o|o|eo|eo|eo|eo|eo|e|e

S
e Cannot be smoothed!

« Can we do something different while
searching

18

Solution Il

» Allow parents that are non-neighbors in the grid (but
visible) to be used during search

S s S S’

—>
parent(S)
Standarf:i A:* ’ Theta*
9(s) = g(s)+c(s,s7) IF parent(s) is visible from s’
Insert s with estimate g(s") = g(parent(s)) + c(parent(s),s’) + h(s’

g(s) = g(s) +c(s,s') + h(s")

Nash, Daniel, Koenig, Felner. Theta*: Any-Angle Path
Planning on Grids. AAAI 2007.

Solution 1l

* Why does it work? Why does it give a lower cost path?

* Note: This approximates searching through the entire

visibility graph of the grid nodes (too expensive to be
practical)

1 2 3 4 5 6 7 8 9 10
A
B X

-
c = —X
st _-T

D / = - —
Bt =

= = = = shortest path e shortest path found by Theta*

Nash, Daniel, Koenig, Felner. Theta*: Any-Angle Path
Planning on Grids. AAAI 2007.

19

Solution I

'S4 | 83 So

LU R S4 53 59

: ® ® ®

AN

S5@ | @ ® 5] . ; :

| S5 @ ® ® S1
® © ® '

0 = =8 ® ® ®

53 =8
P g ? s

56 & * &5
S7

 Idea: Allow crossing cell edges

Solution I

S3

\ 4
S7

g(s1)

g(s) = ming(g(s’) +c(s,s"))

Intractable: need to search over all of the s’
Approximation: g(s’) ~ yg(s,) + (1 —y)g(s1)

20

T

‘ g(sz)
‘e b Ma/\/g(%)
[] (] & 1] [] L
/ i
(2]
*— 0 je] - 0 le]

g(s") ~min x+ VA =22 +y2 +yg(sy) + (1 — y)g(sy)

150 x 60 arid

21

Does it make a difference?

16000 -
14000
12000
g
8 10000 oFD"
& @ Basic Theta*
g 8000 i
w DOAP Theta
2 so00 mA'PS
Q
>
4000 4
2000
0 4
0 5 10 20 30
% Blocked
285 0.35
280 A
- 0.3
275
/ L 0.5 —=FD"* Length
270 m [Basic Theta” Lern
= / E AP Theta* Lengtl
k) 265 - 0.2 c
S , o A" PS Length
- - = -
£ 260 _0155. —aA—FD* Time
g "~ § |-m—Basic Theta" Tim
255 8 —¥— AP Theta* Time
r 01 A* PS Time
250 1
045 1 - 0.05
240 H)
0 5 10 20 30
% Blocked

22

Approaches

—Cell decomposition
—Roadmaps
—Sampling Techniques
(RRT, DRT, PRM,..)
—On-line algorithms
D*, ARA*,..

Roadmaps

Z WAFQ E?T":
ellefigld e N
Carrige Ag = ip%y
Holyrood Rd -~ Begler St ‘\"1%,} A
Fenion Ry "
wellon
unlversity

2

Mo gy o
9,

scheley.park
Golf caurse:

Scherley R ark:

General idea:
— Avoid searching the entire space

— Pre-compute a (hopefully small) graph (the roadmap)
such that staying on the “roads” is guaranteed to
avoid the obstacles

— Find a path between g, and g, by using the
roadmap

First “obvious” approach (but not practical)

qend

qstart

Astart

24

qend

Qstart

® Assuming polygonal obstacles: It looks like the shortest path
is a sequence of straight lines joining the vertices of the
obstacles.
* This is always true - ldea:

* Link the vertices into a graph

» Search (e.g., A*) through that graph

25

Visibility Graphs (Lozano-Perez et al.)

qend

qstar'l

* Visibility graph G = set of unblocked lines between
vertices of the obstacles + g, and g gy

* Anode P is linked to a node P’ if P’ is visible from P
* Solution = Shortest path in the visibility graph

Note important concept for later: visibility

hE

26

Construction: Sweep Algorithm

“Ostart
» Sweep a line originating at each vertex
» Record those lines that end at visible vertices

Complexity

qend

qstart

* N = total number of vertices of the
obstacle polygons

» Naive: O(N3)

» Sweep: O(N? log N)

» Optimal: O(N?)

27

Why not practical?

» Shortest path but:
— Tries to stay as close as possible to obstacles
— Any execution error will lead to a collision
— Complicated in >> 2 dimensions

* We may not care about strict optimality so
long as we find a safe path. Staying away
from obstacles is more important than
finding the shortest path

* Need to define other types of “roadmaps”

Skeletons

O O

» Given a set of data points in the plane:

— Color the entire plane such that the color of any point
in the plane is the same as the color of its nearest
neighbor

28

Skeletons

O

 Voronoi diagram = The set of line segments
separating the regions corresponding to different

colors
* Line segment = points equidistant from 2 data points
* Vertices = points equidistant from > 2 data points

29

Skeletons

- =~

Vertices are equidistant
from 3 points

Points on the edge are
equidistant from the blue
and red points

 Voronoi diagram = The set of line segments
separating the regions corresponding to different

colors
* Line segment = points equidistant from 2 data points

 Vertices = points equidistant from > 2 data points

Voronol Diagrams

» Complexity (in the plane):
* O(N log N) time
* O(N) space

(See for example http://www.cs.cornell.edu/Info/People/chew/Delaunay.html for

an interactive demo)

30

/ x N 7

/ /7 \ \V{

[l 1

t——t———

\ \

\i /(i // \\

Beyond Points
————o—=

* Edges are combinations of straight line
segments and segments of quadratic curves

 Straight edges: Points equidistant from 2 lines

 Curved edges: Points equidistant from one
corner and one line

31

Voronoi Diagrams (Polygons)

» Key property: The points on the edges of the skeleton
are the furthest from the obstacles

* Idea: Construct a path between qg,, and g, by
following edges on the skeleton

* (Use the skeleton as a roadmap)

Voronol Diagrams: Planning

e
qgoal

 Find the point q*, of the graph closest
10 Qtart

« Find the point q*,, of the graph closest
to qgoal

» Compute shortest path from g*, to
0*50a1 ON the graph

33

elb
LA |_

¥shoy
the example above is borrowed fiom “Al: A Modern Approach”™ by S. Russell. & P. Norvig

« Complete? Optimal?

Example

34

Courtesy Howie Choset and http://www.aercam.org

Weaknesses

« Difficult to compute in higher dimensions or non-
polygonal worlds

» Approximate algorithms exist

» Use of skeleton is not necessarily the best
heuristic (“stay away from obstacles”) Can lead
to paths that are much too conservative

» Can be unstable - Small changes in obstacle
configuration can lead to large changes in the
diagram

35

Approximate Cell Decomposition:

Limitations
+ Good:

— Limited assumptions on obstacle
configuration

— Approach used in practice
— Find obvious solutions quickly
» Bad:
— No clear notion of optimality (“best” path)
— Trade-off completeness/computation

— Still difficult to use in high dimensions (need
to compute Cs..... exolicitlv!)

36

