
1

Path/Motion Planning

Movies/demos provided by James Kuffner and Howie Choset +
Examples from J.C. latombe’s and Steve Lavalle’s book

Excellent reference:
S. Lavalle. Planning algorithms. Cambridge University Press. 2007.

2

Example from James Kuffner

Path/Motion Planning

• Application of earlier search approaches
(A*, stochastic search, etc.)

• Search in geometric structures

• Spatial reasoning

• Challenges:
– Continuous state space

– Large dimensional space

3

Biology

Process Engineering/Design

Animation/
Virtual actors

Robotics is only
(a small) one of
many
applications of
spatial
reasoning

(Kineo)

Approach

• Convert the problem to a search problem
through some space (e.g., using A*)

• What is the state space?

• How to represent it (continuous 
discrete)?

4

Simple approach: State = position

Start

Goal

Moving a point through space
around obstacles

State space: (x,y)

Moving a piano through space
around obstacles

State space: (x,y,)

Degrees of Freedom

5

Examples

Allowed to move only
in x and y: 2DOF

Allowed to move in x
and y and to rotate:
3DOF (x,y,)

• Configuration space C = set of values of q corresponding to legal
configurations of the robot
• Defines the set of possible parameters (the search space) and the set of
allowed paths
• Assumptions:

• We have defined a distance in C-space
• We have defined a notion of “volume” in C-space (formally, a measure)

Configuration Space (C-Space)

6

Large C-Space Dimension

~13,000 DOFs !!!

Millipede-
like robot
(S. Redon)

Start

Goal

Moving a point through space
around obstacles

State space: (x,y)

A valid path is when the point is
never inside an obstacle

Moving a piano through space around
obstacles

State space: (x,y,)

A valid path is when the piano never
intersect the obstacles

Sounds very expensive: We need to
1. Transform piano to its shape for each
2. Check for intersection with the

obstacles

7

Free Space: Point

• Cfree = {Set of parameters q for which
A(q) does not intersect obstacles}
• For a point robot in the 2-D plane: R2

minus the obstacle regions

8

Free Space: Symmetric Robot

• We still haveC = R2 because
orientation does not matter
• Reduce the problem to a point
robot by expanding the obstacles by
the radius of the robot

Free Space: Non-Symmetric Robot

• The configuration space is now three-
dimensional (x,y,)
• We need to apply a different obstacle
expansion for each value of 
• We still reduce the problem to a point
robot by expanding the obstacles

9

Formal definition of the free
space trick (simple case)

10



x

y

More Complex C-Spaces

11

Path/Motion Planning Problem

system

Any Formal Guarantees? Generic
Piano Movers Problem

12

Completeness

• Important definition:

• An algorithm is complete if:
– If a path exists, it finds it in finite time

– If a path does not exist, it returns in finite time

• Sound if:
– Guaranteed to never cross an obstacle

• Less important:
– Optimal if guaranteed to find the shortest path

(if it exists)

Approaches

– Cell decomposition

– Roadmaps

– Sampling Techniques

(RRT, DRT, PRM,..)

– On-line algorithms

D*, ARA*,..

In all cases: Reduce the
intractable problem in
continuous C-space to a
tractable problem in a
discrete space  Use
all of the techniques we
know (A*, stochastic
search, etc.)

13

Approaches

– Cell decomposition

– Roadmaps

– Sampling Techniques

(RRT, DRT, PRM,..)

– On-line algorithms

D*, ARA*,..

Decompose the
space into cells so
that any path inside a
cell is obstacle free

Approximate Cell Decomposition

• Define a discrete grid in C-Space
• Mark any cell of the grid that intersects Cobs as

blocked
• Find path through remaining cells by using (for

example) A* (e.g., use Euclidean distance as
heuristic)

• Cannot be complete as described so far. Why?
• Is it optimal?

14

Approximate Cell Decomposition

• Cannot find a path in this case even though one exists
• Solution:
• Distinguish between

– Cells that are entirely contained in Cobs (FULL) and
– Cells that partially intersect Cobs (MIXED)

• Try to find a path using the current set of cells
• If no path found:

– Subdivide the MIXED cells and try again with the new set of
cells

15

Is it complete now?

• An algorithm is resolution complete when:
– If a path exists, it finds it in finite time

– If a path does not exist, it returns in finite time

Start Goal

Start Goal

16

Optimality issues
• We took care of completeness
• How about optimality? Why is it not optimal?

• To improve we’ll need the notion of visibility: s is
visible by s’ iff the line between s and s’ does not
intersect obstacles

• Consecutive states on a sound path are visible from
each other

17

S

G

Solution I

18

Solution I

Example: A. Botea, M. Muller, J. Schaeffer. Near optimal hierarchical
path-finding. Journal of game development. 2004.

S

G

• Cannot be smoothed!

• Can we do something different while
searching

19

Solution II
• Allow parents that are non-neighbors in the grid (but

visible) to be used during search

Nash, Daniel, Koenig, Felner. Theta*: Any-Angle Path
Planning on Grids. AAAI 2007.

S’S
S’S

parent(S)

Solution II
• Why does it work? Why does it give a lower cost path?
• Note: This approximates searching through the entire

visibility graph of the grid nodes (too expensive to be
practical)

Nash, Daniel, Koenig, Felner. Theta*: Any-Angle Path
Planning on Grids. AAAI 2007.

20

Solution III

• Idea: Allow crossing cell edges

Solution III

݃ ݏ ൌ ݉݅݊௦ᇲሺ݃ ᇱݏ ൅ ܿ ,ݏ ᇱݏ ሻ

Intractable: need to search over all of the s’

Approximation: ݃ ᇱݏ ൎ ݃ݕ ଶݏ ൅ 1 െ ݕ ݃ሺݏଵሻ

݃ ଶݏ

݃ ଵݏ

21

݃ ᇱݏ ൎ min
௫,௬

ݔ ൅ 1 െ ݔ ଶ ൅ ଶݕ ൅ ݃ݕ ଶݏ ൅ 1 െ ݕ ݃ሺݏଵሻ

݃ ଶݏ

݃ ଵݏ

150 × 60 grid

22

Does it make a difference?

23

Approaches

– Cell decomposition

– Roadmaps

– Sampling Techniques

(RRT, DRT, PRM,..)

– On-line algorithms

D*, ARA*,..

Roadmaps

24

First “obvious” approach (but not practical)

25

• Assuming polygonal obstacles: It looks like the shortest path
is a sequence of straight lines joining the vertices of the
obstacles.
• This is always true  Idea:

• Link the vertices into a graph
• Search (e.g., A*) through that graph

26

Visibility Graphs (Lozano-Perez et al.)

• Visibility graph G = set of unblocked lines between
vertices of the obstacles + qstart and qgoal

• A node P is linked to a node P’ if P’ is visible from P
• Solution = Shortest path in the visibility graph

Note important concept for later: visibility

27

Construction: Sweep Algorithm

• Sweep a line originating at each vertex
• Record those lines that end at visible vertices

Complexity

• N = total number of vertices of the
obstacle polygons
• Naïve: O(N3)
• Sweep: O(N2 log N)
• Optimal: O(N2)

28

Why not practical?

• Shortest path but:
– Tries to stay as close as possible to obstacles

– Any execution error will lead to a collision

– Complicated in >> 2 dimensions

• We may not care about strict optimality so
long as we find a safe path. Staying away
from obstacles is more important than
finding the shortest path

• Need to define other types of “roadmaps”

Skeletons

• Given a set of data points in the plane:
– Color the entire plane such that the color of any point

in the plane is the same as the color of its nearest
neighbor

29

Skeletons

• Voronoi diagram = The set of line segments
separating the regions corresponding to different
colors

• Line segment = points equidistant from 2 data points
• Vertices = points equidistant from > 2 data points

30

Skeletons

• Voronoi diagram = The set of line segments
separating the regions corresponding to different
colors

• Line segment = points equidistant from 2 data points
• Vertices = points equidistant from > 2 data points

Voronoi Diagrams

• Complexity (in the plane):
• O(N log N) time
• O(N) space
(See for example http://www.cs.cornell.edu/Info/People/chew/Delaunay.html for
an interactive demo)

31

Beyond Points

• Edges are combinations of straight line
segments and segments of quadratic curves

• Straight edges: Points equidistant from 2 lines
• Curved edges: Points equidistant from one

corner and one line

32

33

Voronoi Diagrams (Polygons)

• Key property: The points on the edges of the skeleton
are the furthest from the obstacles
• Idea: Construct a path between qstart and qgoal by
following edges on the skeleton
• (Use the skeleton as a roadmap)

Voronoi Diagrams: Planning

• Find the point q*start of the graph closest
to qstart

• Find the point q*goal of the graph closest
to qgoal

• Compute shortest path from q*start to
q*goal on the graph

34

Example

• Complete? Optimal?

Example

35

Weaknesses

• Difficult to compute in higher dimensions or non-
polygonal worlds

• Approximate algorithms exist

• Use of skeleton is not necessarily the best
heuristic (“stay away from obstacles”) Can lead
to paths that are much too conservative

• Can be unstable  Small changes in obstacle
configuration can lead to large changes in the
diagram

36

Approximate Cell Decomposition:
Limitations

