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Learning Conditions

* Assume world can be modeled as a Markov Decision
Process, with rewards as a function of state and action.

* Markov assumption:
New states and rewards are a function only of the
current state and action, i.e.,
- S = 6(er ar)
- r=rs, a)
* Unknown and uncertain environment:

Functions d and » may be nondeterministic and are not
necessarily known to learner.

Reinforcement Learning Problem
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Goal: Learn to choose actions that maximize

ro+yrty¥,+ .. ,where 0<y<l1

« Execute actions in world,
« Observe state of world,
* Learn action policy n: S — 4

» Maximize expected reward
E[rt+ Y + err+2+ ]

from any starting state in S.
— 0 =y <1, discount factor for future rewards

Statement of Learning Problem

Policies

* We have a target function to learn = : § — 4

» We have no training examples of the form (s, )

» We have training examples of the form ((s, @), r)
(rewards can be any real number)
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immediate reward values r(s,a)

‘ Assume deterministic world ‘

» There are many possible policies, of course not
necessarily optimal, i.e., with maximum expected reward

* There can be also several OPTIMAL policies.




Value Function

For each possible policy =, define an evaluation function
over states
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where r,, r,,4,... are generated by following policy ©
starting at state s

» Learning task: Learn OPTIMAL policy

n* = argmax_ V(s), (Vs) ‘

Learn Value Function

« Learn the evaluation function V**, i.e., V*.

» Select the optimal action from any state s, i.e., have an
optimal policy, by using 7* with one step lookahead:

a (v) = arglrlnax [r(s, a)+ yV*(ﬁ(s, a))]
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Optimal Value to Optimal Policy

‘ n*(s) = argmax [/(s.a) + yV*(d(s,q))] ‘

A problem:

» This works well if agent knows §: S x 4 — S, and
r:Sx4—-%N

* When it doesn't, it can’t choose actions this way

0 Function

» Define new function very similar to 7™

O(s,a) = r(s,a) + yV*(0(s,a))

‘ Learn Q function — QO-learning ‘

» If agent learns Q, it can choose optimal action even
without knowing ¢ or r.

JT‘(S) = argznaxl_r(s,a)+ yV*(é(s,a))J

P (s) =argmaxQ(s,a)

0O-Learning

Note that Q and V* are closely related:

V*(s)= max 0(s. @)
Which allows us to write Q recursively as

Q(sx,a,) = r(sl,al)+ yV*(é(s,,al ))

< lssa o el )

Q-learning actively generates examples.
It “processes” examples by updating its Q values.
While learning, O values are approximations.

Training Rule to Learn Q

Let Q denote current approximation to Q.

Then Q-learning uses the following training rule:

‘Q(s,a)er+ ymax , Q(s',a')

where s’ is the state resulting from executing action « in
state s, and r is the reward that is returned.




Example - Updating é
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Initial state: s, Next state: §,

Q(Sl’arighl) < r+ymng(sz,a')

~ 0+ 0.9amax{63,81,100 }
< 90

0 Learning for Deterministic Worlds

For each s, « initialize table entry O(s,a) « 0
Observe current state s

Do forever:

» Select an action a and execute it

» Receive immediate reward r

» Observe the new state s’

» Update the table entry for Q(s,a) as follows:

Q(S,a)e r+ Y max Q(s',a')

Example - Q Learning lterations

Starts at top left corner - moves clockwise around perimeter;
Initially O(s,a) = 0; y=10.8
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‘ Q(s,a)e F+ymax, Q(s',a')‘

Problem - Deterministic
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How many possible policies are there in this 3-state, 2-action
deterministic world?

A robot starts in the state Mild. It moves for 4 steps choosing
actions West, East, East, West. The initial values of its Q-table
are 0 and the discount factor is y = 0.5

Initial State: MILD Action: West Action: East Action: East Action: West
New State: HOT | New State: MILD | New State: COLD | New State: MILD

East West East West East West East West East West

Q(s1.E) Q(s2.E) Q(s3.9) Q(s4.W)
0 0 0 T+~ max{Q(s5,loop) }=
10+08.0=10
0 0 T+ Max| QG4 W), QG4 N | =
0+0.8max{100}=8 10
0 r+~ max{Q(s3 W), Q(s3.9) }=
0+0.8max{08}=64 8 10

HOT 0 0 0 0 5 0 5 0 5 0
MILD 0 0 0 10 0 10 0 10 0 10
COLD 0 0 0 0 0 0 0 0 [ -5

Another Deterministic Example
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V*(s) values One optimal policy

Nondeterministic Case

What if reward and next state are non-deterministic?
We redefine ¥, Q by taking expected values

Vo(s) =Elr 4+ r7r

o

=E£ 27[’?“‘

Ols.a) = Elrls.a)+ 7" (5(s.))]




Nondeterministic Case Discussion

Q leaming generalizes to nondeterministic worlds » How should the learning agent use the infermediate O

Alter training rule to values?
R R — Exploration
0, (s,a)<— (1 -a, )Qn_l(s,a)+ — Exploitation
Uy [r +ymaxQ,, (s.a )] + Scaling up in the size of the state space

— Function approximator (neural net instead of table)

whereqr =1 ands’=(5(s a) — Generalization
n " Tevisitsy (sa) ’ > — Reuse, use of macros
Qstill convergesto Q" (Watkinsand Dayan,1992) — Abstraction, learning substructure
Summary

» Markov Models with Reward

* Value iteration

» Markov Decision Process

* Value Iteration

* Policy lteration

* Reinforcement Learning

POMDPs — Chapter 17, Russell and Norvig




