Reinforcement Learning

Manuela Veloso

(see Tom Mitchell's "Machine Learning" book)

Grad Al

Spring 2012

Learning Conditions

- Assume world can be modeled as a Markov Decision Process, with rewards as a function of state and action.
- Markov assumption:

New states and rewards are a function only of the current state and action, i.e.,

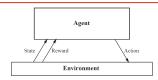
$$- s_{t+1} = \delta(s_t, a_t)$$

$$- r_t = r(s_t, a_t)$$

• Unknown and uncertain environment:

Functions δ and r may be nondeterministic and are not necessarily known to learner.

Reinforcement Learning Problem



$$s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} \dots$$

Goal: Learn to choose actions that maximize $r_0+\gamma r_1+\gamma^2 r_2+\dots \ , \ \text{where}\ 0\leq \gamma<1$

Control Learning Task

- · Execute actions in world,
- · Observe state of world,
- Learn action policy $\pi: S \to A$
- · Maximize expected reward

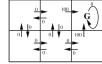
$$E[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots]$$

from any starting state in S.

- 0 ≤ γ < 1, discount factor for future rewards

Statement of Learning Problem

- We have a target function to learn $\pi: S \to A$
- We have **no** training examples of the form $\langle s, a \rangle$
- We have training examples of the form \(\langle \sigma, a \rangle, r \rangle\)
 (rewards can be any real number)



immediate reward values r(s,a)

Policies

Assume deterministic world

- There are many possible policies, of course not necessarily optimal, i.e., with maximum expected reward
- There can be also several OPTIMAL policies.

Value Function

For each possible policy π , define an evaluation function over states

$$\begin{split} V^{\pi}(s) &= r_t + \gamma r_{t+1} + \gamma^2 r_{t+1} + \dots \\ &= \sum_{m=0}^{\infty} \gamma^i r_{t+i} \end{split}$$

where $r_{i}, r_{i+1},...$ are generated by following policy π starting at state s

· Learning task: Learn OPTIMAL policy

 $\pi^* \equiv \operatorname{argmax}_{\pi} V^{\pi}(s), (\forall s)$

Learn Value Function

- Learn the evaluation function $V^{\pi*}$, i.e., V^* .
- Select the optimal action from any state s, i.e., have an optimal policy, by using V^* with one step lookahead:

$$\pi^*(s) = \underset{a}{\arg\max} \left[r(s, a) + \gamma V^*(\delta(s, a)) \right]$$

ONE optimal policy

Optimal Value to Optimal Policy

 $\pi^*(s) = \operatorname{argmax}_a[r(s,a) + \gamma V^*(\delta(s,a))]$

A problem:

- This works well if agent knows $\delta: S \times A \rightarrow S$, and $r: S \times A \rightarrow \Re$
- · When it doesn't, it can't choose actions this way

O Function

• Define new function very similar to V^*

$$Q(s,a) \equiv r(s,a) + \gamma V^*(\delta(s,a))$$

Learn Q function – Q-learning

If agent learns Q, it can choose optimal action even without knowing δ or r.

$$\pi^*(s) = \underset{a}{\arg\max} \left[r(s, a) + yV^*(\delta(s, a)) \right]$$
$$\pi^*(s) = \underset{a}{\arg\max} Q(s, a)$$

$$\pi^*(s) = \arg\max Q(s, a)$$

Q-Learning

Note that Q and V^* are closely related:

$$V^*(s) = \max_{a'} Q(s, a')$$

Which allows us to write Q recursively as

$$Q(s_t, a_t) = r(s_t, a_t) + \gamma V^*(\delta(s_t, a_t))$$

= $r(s_t, a_t) + \gamma \max_{a'} Q(s_{t+1}, a')$

Q-learning actively generates examples. It "processes" examples by updating its Q values. While learning, Q values are approximations.

Training Rule to Learn Q

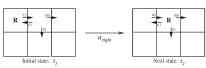
Let \hat{Q} denote current approximation to Q.

Then Q-learning uses the following training rule:

$$\hat{Q}(s,a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s',a')$$

where s' is the state resulting from executing action a in state s, and r is the reward that is returned.

Example - Updating $\hat{ ilde{Q}}$



$$\begin{split} \hat{\mathcal{Q}}\left(s_{1}, a_{right}\right) &\leftarrow r + \gamma \max_{a'} \hat{\mathcal{Q}}\left(s_{2}, a'\right) \\ &\leftarrow 0 + 0.9 \max\left\{63, 81, 100\right\} \\ &\leftarrow 90 \end{split}$$

Q Learning for Deterministic Worlds

For each s, a initialize table entry $\hat{Q}(s,a) \leftarrow 0$

Observe current state s

Do forever:

- Select an action a and execute it
- Receive immediate reward r
- Observe the new state s'
- Update the table entry for $\hat{Q}(s,a)$ as follows:

$$\hat{Q}(s,a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s',a')$$

• $s \leftarrow s'$

Example - Q Learning Iterations

Starts at top left corner – moves clockwise around perimeter; Initially Q(s,a) = 0; γ = 0.8

 $\hat{Q}(s,a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s',a')$

Q(s1,E)	Q(\$2,E)	Q(s3,S)	Q(s4,W)
0	0	0	$r + \gamma \max{Q(s5,loop)} =$
			10 + 0.8 . 0 = 10
0	0	$r + \gamma \max{Q(s4,W),Q(s4,N)} =$	
		0 + 0.8 max{10,0}= 8	10
0	$r + \gamma \max{Q(s3,W),Q(s3,S)} =$		
	0 + 0.8 max{0.8}= 6.4	8	10
	Q(s1,E) 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 r+ \gamma max(\O(st.W).\O(st.N))= 0 0 r+ \gamma max(\O(st.W).\O(st.N))= 0 + 0.8 max(10.0) = 8

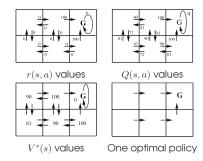
Problem - Deterministic

How many possible **policies** are there in this 3-state, 2-action deterministic world?

A robot starts in the state Mild. It moves for 4 steps choosing actions **West, East, East, West**. The initial values of its Q-table are 0 and the discount factor is γ = 0.5

	Initial State: MILD		Action: West New State: HOT		Action: East New State: MILD		Action: East New State: COLD		Action: West New State: MILD	
	East	West	East	West	East	West	East	West	East	West
нот	0	0	0	0	5	0	5	0	5	0
MILD	0	0	0	10	0	10	0	10	0	10
COLD	0	0	0	0	0	0	0	0	0	-5

Another Deterministic Example



Nondeterministic Case

What if reward and next state are non-deterministic? We redefine V, Q by taking expected values

$$\begin{split} V^{\pi} \Big(s \Big) &= E \left[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots \right] \\ &= E \left[\sum_{i=0}^{\infty} \gamma^i r_{t+i} \right] \end{split}$$

$$Q(s,a) = E[r(s,a) + \gamma V^*(\delta(s,a))]$$

Nondeterministic Case

 $\ensuremath{\mathcal{Q}}$ learning generalizes to nondeterministic worlds Alter training rule to

$$\begin{split} \hat{Q}_{n}(s,a) &\longleftarrow \big(1-\alpha_{n}\big)\hat{Q}_{n-1}(s,a) + \\ &\alpha_{n}\left[r + \gamma \max_{a'} \hat{Q}_{n-1}(s',a')\right], \end{split}$$

where
$$\alpha_n = \frac{1}{1 + visits_n(s,a)}$$
, and $s' = \delta(s,a)$

 \hat{Q} still converges to Q^* (Watkins and Dayan, 1992)

Discussion

- How should the learning agent use the intermediate Q values?
 - Exploration
 - Exploitation
- · Scaling up in the size of the state space
- Function approximator (neural net instead of table)
- Generalization
- Reuse, use of macros
- Abstraction, learning substructure

Summary

- · Markov Models with Reward
- · Value iteration
- · Markov Decision Process
- Value Iteration
- Policy Iteration
- · Reinforcement Learning
- POMDPs Chapter 17, Russell and Norvig