

GRADUATE AI

LECTURE 9: HEURISTIC SEARCH

TEACHERS:
MARTIAL HEBERT
ARIEL PROCACCIA (THIS TIME)

HEURISTICS

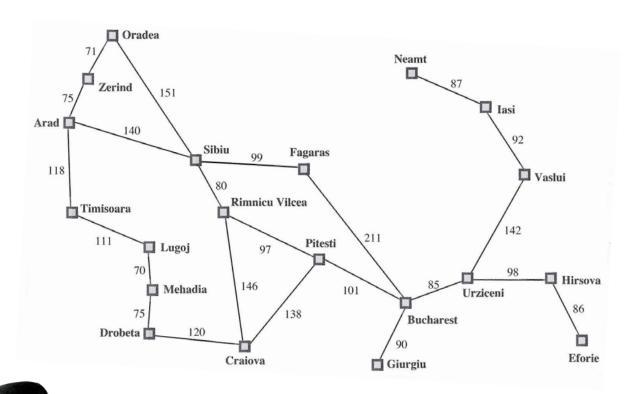
- On Monday we saw that heuristics matter!
- Heuristics are usually taken to mean "rules of thumb"
- Practical techniques that work well despite lack of theoretical guarantees
- In this lecture: a bit more formal than that

BEST-FIRST SEARCH

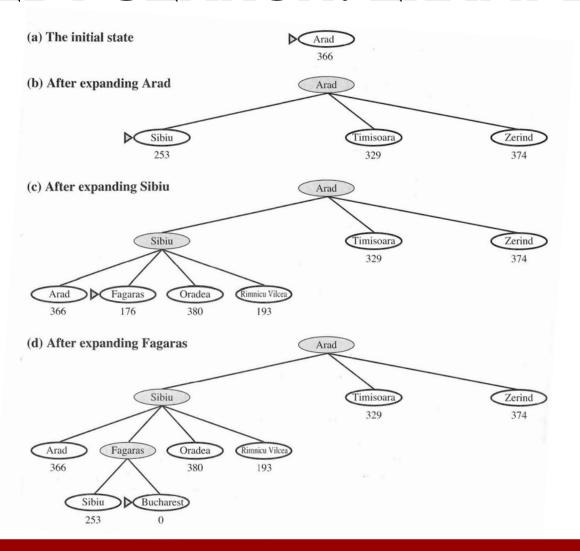
- Find a path from initial state to goal state
- Relies on an evaluation function
- Nodes with best evaluation value are explored first
- Different evaluation functions induce different algorithms

GREEDY SEARCH

- Best-first search with evaluation function h(n)
- h(n) = estimated cost from node n to a goal state

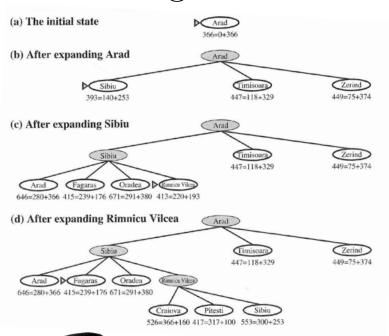


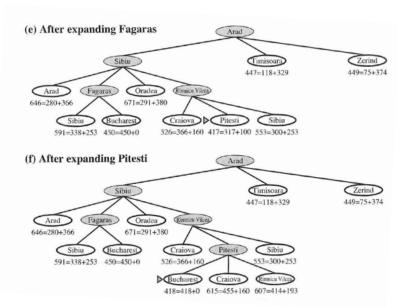
GREEDY SEARCH: EXAMPLE



A* SEARCH

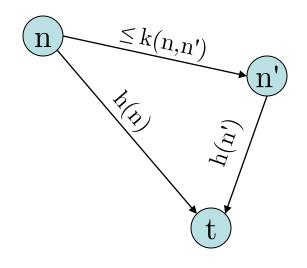
- Best-first search with f(n) = g(n) + h(n)
- g(n) = work done so far, h(n) = estimate of remaining work





GOOD HEURISTICS

- k(n,n') = cost of cheapestpath between n and n'
- h is **consistent** if for every n,n', $h(n) \le k(n,n') + h(n')$
- Line distance heuristic is consistent by the triangle inequality

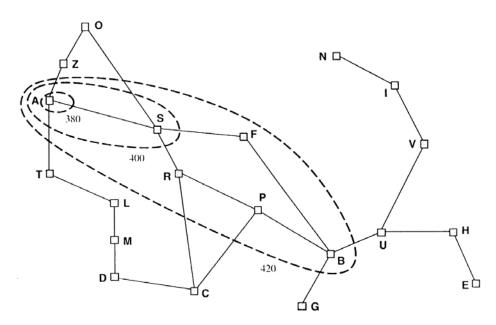


OPTIMALITY OF A*

- **Theorem:** If h is consistent, A* returns the min cost solution
- Proof:
 - \circ Assume $h(n) \le k(n,n') + h(n')$
 - Values of f(n) on a path are nondecreasing: if n' is the successor of n then $f(n') = g(n') + h(n') \ge g(n) + h(n) = f(n)$
 - When A* selects n for expansion, the optimal path to n has been found: otherwise there is a frontier node n' on optimal path to n that should be expanded first
 - \circ \Rightarrow Nodes expanded in nondecreasing f(n)
 - First goal state that is expanded must be optimal QED

MORE ON CONSISTENCY

- With a consistent heuristic A* f-costs are nondecreasing
- We can draw contours in the state space



ADMISSIBILITY

- $h^*(n) = cost of cheapest path from n to a$ goal
- h is admissible if for all nodes n, $h(n) \le h^*(n)$
- Consistency implies admissibility
 - \circ For goal t, $h(n) \le k(n,t) + h(t) = k(n,t) = h^*(n)$
- A* with admissible h is optimal under additional assumptions

8-PUZZLE HERUISTICS

- h₁: #tiles in wrong position
- h₂: sum of Manhattan distances of tiles from goal
- Both are admissible
- h_2 dominates h_1 , i.e., $h_1(n) \le h_2(n)$ for all n

5	2	
6	1	3
7	8	4

Example state

1	2	3
4	5	6
7	8	

Goal state

THE IMPORTANCE OF A GOOD HEURISTIC

• The following table gives the search cost of A* with the two heuristics, averaged over random puzzles, for various solution lengths

${f Length}$	$\mathbf{A^*}(\mathbf{h}_1)$	$\mathrm{A*}(\mathrm{h}_2)$
16	1301	211
18	3056	363
20	7276	676
22	18094	1219
24	39135	1641

OPTIMALITY OVER OTHER ALGS

- We prove the following statements on the board
- They also appear in: R. Dechter and J. Pearl. Best-first search and the optimality of A*. Journal of the ACM 32:506-536, 1985 (link on course website)
- Any alg that is admissible given consistent heuristics will expand all nodes surely expanded by A* [Dechter and Pearl, Thm 8 on page 522]
- This is not true if the heurisitic is merely admissible [Dechter an Pearl, pages 524-525]

