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Cake cutting 

• A cake must be divided 
between several children 

• The cake is heterogeneous 
• Each child has different value 

for same piece of cake 
• How can we divide the cake 

fairly? 
• What is “fairly”? 
• A metaphor for land disputes, 

time using shared resources, 
etc. 
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The model 

• Cake is interval [0,1] 
• Set of agents/players {1,...,n} 
• Piece of cake X ⊆ [0,1]: finite union of 

disjoint intervals 
• Each agent has valuation vi over pieces of 

cake 
o Additive, value of whole cake is 1 
o Think probability measure 

• Find allocation X1 ,...,Xn 
o Not necessarily connected pieces 

3 



Fairness properties 

• Proportionality: ∀i, vi(Xi) ≥ 1/n 
• Envy-Freeness: ∀i,j, vi(Xi) ≥ vi(Xj) 
• For n = 2 which is stronger? 

o Envy-freeness ⇔ proportionality 
• For n ≥ 3 which is stronger? 

o Envy-freeness ⇒ proportionality 
o Proportionality does not imply EF 
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Cut-and-Choose 

• Algorithm for n=2 
• Agent 1 divides into two pieces 

X,Y s.t.  
v1(X)=1/2, v1(Y)=1/2 

• Agent 2 chooses preferred piece 
• This is EF (hence proportional) 
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Dubins-Spanier 
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• Referee continuously moves knife 
• Repeat: when piece left of knife is worth 

1/n to agent, agent shouts “stop” and gets 
piece 

• That agent is removed 
• Last agent gets remaining piece 
• Protocol is proportional 



Discrete Dubins-Spanier 

• Moving knife is not really needed 
• Repeat: each agent makes a mark at his 

1/n point, leftmost agent gets piece up to 
its mark 
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Example 
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Example 
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Example 
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Example 
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Selfridge-Conway 
• Stage 0 

o Agent 1 divides the cake into three equal pieces according to v1 
o Agent 2 trims the largest piece s.t. there is a tie between the two 

largest pieces according to v2 
o Cake 1 = cake w/o trimmings,  Cake 2 = trimmings 

• Stage 1 
o Agent 3 chooses one of the three pieces of Cake 1 
o If agent 3 did not choose the trimmed piece, agent 2 is allocated the 

trimmed piece 
o Otherwise, agent 2 chooses one of the two remaining pieces 
o Agent 1 gets the remaining piece 
o Denote the agent i∈{2, 3} that received the trimmed piece by T, and 

the other by T’ 
• Stage 2 

o T’ divides Cake 2 into three equal pieces according to vT’ 
o Agents T, 1, and T’ choose the pieces of Cake 2, in that order 
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The Robertson-Webb model 

• A concrete complexity model 
• Two types of queries 

o Evali(x,y) = vi([x,y]) 
o Cuti(x,α) = y s.t. vi([x,y]) = α 

• Can simulate all known discrete protocols 
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Bounds in RW model 

• Proportional 
o Recursive protocol that requires O(nlogn) queries 

[Even and Paz, 1984] 
o Lower bound of Ω(nlogn) [Edmonds and Pruhs, 

SODA 2006] 
• Envy free (always exists) 

o n = 2: Cut and Choose 
o n = 3: “good” protocol [Selfridge and Conway] 
o n ≥ 4: known protocol requires unbounded number of 

queries 
o Lower bound of Ω(n2) [P, IJCAI 2009], unbounded 

with contiguous pieces [Stromquist, 2009] 
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Strategyproofness 
• We discussed strategyproofness (SP) in social choice and 

auctions 
• All the cake cutting algorithms that we discussed are not 

SP: agents can gain from manipulation 
o Cut and choose: player 1 can manipulate 
o Dubins Spanier: shout later 

• Assumption: agents report their full valuation functions 
(which are typically assumed to be concisely 
representable) 

• Deterministic EF and SP algs exist in some cases, but 
they are rather involved [Chen et al., AAAI 2010] 
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A randomized algorithm 
• X1,...,Xn is a perfect partition if vi(Xj)=1/n for all i,j 
• Algorithm  

o Compute a perfect partition 
o Draw a permutation π over {1,...,n} 
o Allocate to agent i the piece Xπ(i) 

• Theorem [Chen et al., AAAI 2010; Mossel&Tamuz, 
SAGT 2010]: the algorithm is SP in expectation and 
always produces an EF allocation 

• Proof: if an agent lies the algorithm may compute a 
different partition, but for any partition: 
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Computing a perfect partition 

• Theorem [Alon, 1986]: a 
perfect partition always 
exists, needs 
polynomially many cuts 

• Proof is nonconstructive 
• Can find perfect 

partitions for special 
valuation functions 
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Applications of fair division 

• Setting: allocating multiple homogeneous resources to 
agents with different requirements 

• Running example: cloud computing 
• State-of-the-art systems employ a single resource 

abstraction 
• Assumption: agents have proportional demands for their 

resources 
• Example:  

o Agent has requirement (2 CPU,1 RAM) for each copy of task 
o Indifferent between allocations (4,2) and (5,2) 
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Dominant resource fairness 

• Dominant resource of an agent = resource 
that requires highest fraction of total 

• Dominent share = fraction of dominant 
resource 

• Dominant Resource Fairness (DRF) 
[Ghodsi et al, NSDI 2011]: allocate max 
number of tasks s.t. dominant shares are 
equalized 
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DRF example 
• System has 9 CPU, 18 RAM 
• Agent 1 task needs (1 CPU, 4 RAM) 
• Agent 2 task needs (3,1) 
• y and z = number of tasks allocated to agents 1 

and 2, resp. 
• y+3z CPU and 4y+z RAM are allocated 
• max (y,z) s.t. y+3z ≤ 9, 4y+z ≤ 18, 2y/9=z/3 
• Solution: y=3, z=2 ⇒ (3,12) to agent 1, (6,2) to 

agent 2 
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Properties of DRF 

• Theorem [Ghodsi et al., NSDI 2011]: 
DRF is “proportional”, envy free, and 
strategyproof (and Pareto optimal) 
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