

LECTURE 23: GAME THEORY II

A CURIOUS GAME

Iterated elimination \Rightarrow Unique NE at (up,left)

COMMITMENT IS GOOD

- Suppose the game is played as follows:
 - Row player commits to playing a row
 - Column player observes the commitment and chooses column
- Row player can commit to playing down!

1,1	3,0
0,0	2,1

COMMITMENT TO MIXED STRATEGY

- By committing to a mixed strategy, row player can guarantee a reward of 2.5
- Called a Stackelberg (mixed) strategy

	0	1
.49	1,1	3,0
.51	0,0	2,1

COMPUTING STACKELBERG

- **Theorem** [Conitzer and Sandholm, EC 2006]: In 2-player normal form games, an optimal Stackelberg strategy can be found in poly time
- **Theorem** [ditto]: the problem is NP-hard when the number of players is ≥ 3

TRACTABILITY FOR 2 PLAYERS

- For each pure follower strategy t, we compute via the LP below a strategy for the leader such that
 - Playing t is a best response for the follower
 - Under this constraint, the leader strategy is optimal
- Choose t* that maximizes leader value

maximize
$$\sum_{s \in S} p_s u_l(s, t)$$

subject to
for all $t' \in T$, $\sum_{s \in S} p_s u_f(s, t) \ge \sum_{s \in S} p_s u_f(s, t')$
 $\sum_{s \in S} p_s = 1$

APPLICATION: SECURITY

- Airport security: deployed at LAX
- Federal Air Marshals
- Coast Guard
- Idea:
 - Defender commits to mixed strategy
 - Attacker observes and best responds

Newsweek National News

Subscribe Now | Make Newsweek Your Homepage | Newsletters | RSS

The Element of Surprise

To help combat the terrorism threat, officials at Los Angeles Inter Airport are introducing a bold new idea into their arsenal: random of security checkpoints. Can game theory help keep us safe?

WEB EXCLUSIVE

By Andrew Murr

Newsweek

Updated: 1:00 p.m. PT Sept 28, 2007

Sept. 28, 2007 - Security officials at Los Angeles International Airport now have a new weapon in their fight against terrorism: complete, baffling randomness. Anxious to thwart future terror attacks in the early stages while plotters are casing the airport, LAX security patrols have begun using a new software program called ARMOR, NEWSWEEK has learned, to make the placement of security checkpoints completely unpredictable. Now all airport security officials have to do is press a button labeled

Security forces work the sidewalk a

"Randomize," and they can throw a sort of digital cloak of invisibility over where they place the cops' antiterror checkpoints on any given day.

SECURITY GAMES

- Model due to [Kiekintveld et al., AAMAS 2009]
- Set of targets T
- Set of security resources Ω available to the defender (leader)
- Set of schedules $S \subseteq 2^T$
- Resource ω can be assigned to one of the schedules in $A(\omega) \subseteq S$
- Attacker chooses one target to attack
- Utilities depend on target and whether it is defended

SOLVING SECURITY GAMES

- Consider the case of S=T, i.e., resources are assigned to individual targets, i.e., schedules have size 1
- Nevertheless, number of leader strategies is exponential
- Theorem [Korzhyk et al., AAAI 2010]: Optimal leader strategy can be computed in poly time

A COMPACT LP

- LP formulation similar to previous one
- Advantage: logarithmic in #leader strategies
- Disadvantage: do probabilities correspond to strategy?

```
maximize U_d(t^*, \mathbf{c})
subject to
\forall \omega \in \Omega, \forall t \in A(\omega) : 0 \le c_{\omega,t} \le 1
\forall t \in T : c_t = \sum_{t=0}^{\infty} c_{\omega,t} \leq 1
                              \omega \in \Omega : t \in A(\omega)
\forall \omega \in \Omega : \sum_{\alpha} c_{\omega,t} \leq 1
                     t \in A(\omega)
\forall t \in T : U_a(t, \mathbf{c}) \leq U_a(t^*, \mathbf{c})
```

FIXING THE PROBABILITIES

 ω_1

 ω_2

 \mathcal{O}^{t_2}

 t_3

 ω_1

.5

 t_2

 $\omega_1 Q$

 ω_2

FIXING THE PROBABILITIES

- The probabilities $c_{\omega,t}$ satisfy theorem's conditions
- By 3, each matrix consists of $\{0,1\}$ entries
- Interpretation by 4: ω assigned to t iff corresponding entry is 1
- By 1, we get a mixed strategy
- By 2, gives right probs

Theorem 1 (Birkhoff-von Neumann (Birkhoff 1946)). Consider an $m \times n$ matrix M with real numbers $a_{ij} \in [0, 1]$, such that for each $1 \le i \le m$, $\sum_{j=1}^{n} a_{ij} \le 1$, and for each $1 \leq j \leq n$, $\sum_{i=1}^{m} a_{ij} \leq 1$. Then, there exist matri $ces M^1, M^2, ..., M^q$, and weights $w^1, w^2, ..., w^q \in (0, 1]$, such that:

- 1. $\sum_{k=1}^{q} w^k = 1$;
- 2. $\sum_{k=1}^{q} w^k M^k = M$;
- 3. for each $1 \le k \le q$, the elements of M^k are $a_{ij}^k \in \{0,1\}$;
- 4. for each $1 \le k \le q$, we have: for each $1 \le i \le m$, $\sum_{j=1}^{n} a_{ij}^{k} \leq 1$, and for each $1 \leq j \leq n$, $\sum_{i=1}^{m} a_{ij}^{k} \leq 1$.

Moreover, q is $O((m+n)^2)$, and the M^k and w^k can be found in $O((m+n)^{4.5})$ time using Dulmage-Halperin algorithm (Dulmage and Halperin 1955; Chang, Chen, and Huang 2001).

GENERALIZING?

- Schedules of size 2
- Air Marshals domain has such schedules: outgoing+incoming flight (bipartite graph)
- Previous apporoach fails
- **Theorem** [Korzhyk et al., AAAI 2010]: (even bipartite) problem is NP-hard

MECHANISM DESIGN!

- A subfield of game theory that focuses on designing the rules of the game to achieve desirable properties
- We will only cover a tiny fraction of the very basics of auction theory

AD AUCTIONS

ENGLISH AUCTIONS

- Most well-known type of auctions
 - Ascending
 - Open cry
 - First price
- Dominant strategy: successively bid slightly more than current highest bid until price reaches valuation
- Susceptible to:
 - Winner's curse: why doesn't anyone else want the good at the final price?
 - Shills: work for auctioneer and drive prices up

OTHER BORING AUCTIONS

- Dutch
 - Auctioneer starts at high price
 - Auctioneer lowers price until a bidder makes a bid at current price
- First-price sealed-bid auction
 - Bidders submit sealed bids
 - Good is allocated to highest bidder
 - Winner pays price of highest bid
- Bids generally do not match valuation!

VICKREY AUCTION

- Bidders submit sealed bids
- Good is allocated to highest bidder
- Winner pays price of second highest bid!!
- Amazing observation: bidding true valuation is a dominant strategy!!

TRUTHFULNESS: BIDDING HIGH

- Three cases based on highest other bid (blue dot)
- Higher than bid: lose before and after
- Lower than valuation: win before and after, pay same
- Between bid and valuation: lose before, win after but overpay

TRUTHFULNESS: BIDDING LOW

- Three cases based on highest other bid (blue dot)
- Higher than valuation: lose before and after
- Lower than bid: win before and after, pay the same
- Between valuation and bid: win before with profit, lose after

SEQUENTIAL AUCTIONS ARE BAD

- A computer and screen are sold in two Vickrey auctions
- Each is worthless alone but together their value to you is \$500
- What should bid in the first auction?
 - Say you bid \$200 and lose to a \$300 bid; the screen may sell for \$50
 - Say you bid \$200 and win; the screen may sell for \$500

COMBINATORIAL AUCTIONS

- Bidders submit bids for *subsets* of goods
- Example:
 - \circ ({A, C, D}, 7)
 - \circ ({B, E}, 7)
 - \circ ({C}, 3)
 - \circ ({A, B, C, E}, 9)
 - \circ ({D}, 4)
 - \circ ({A, B, C}, 5)
 - \circ ({B, D}, 5)
- What is the optimal solution?

WINNER DETERMINATION

- Allocate to maximize social welfare
- Consider the special case of single minded bidders: each bidder i values a subset S_i of items at v_i and any subset that does not contain S_i at 0
- Theorem (folk): optimal winner determination is NP-complete, even with single minded bidders

NP-HARDNESS+PIC

- INDEPENDENT SET (IS): given a graph, is there a set of vertices of size k such that no two are connected?
- Given an instance of IS:
 - The set of items is E
 - Player for each vertex
 - Desired bundle is adjacent edges, value is 1
- A set of winners W satisfies $S_i \cap S_i$ for every i≠j∈W iff the vertices in W are an independent set

3: {b,c}

FINAL REMARKS

- Vickrey auction can be generalized to yield a truthful mechanism (VCG) for combinatorial auctions
- Requires optimally solving the winner determination problem
- Resorting to approximation is no longer truthful
- *Tons* of research on practical algorithms for solving CAs, and on approximation algorithms that are truthful

