GRADUATE AI

Lecture 21:
SOCIAL CHOICE II

TEACHERS:
Martial HEBERT
ARIEL PROCACCIA (THIS TIME)

REMINDER: VOTING

- Set of voters $N=\{1, \ldots, n\}$
- Set of alternatives $A,|A|=m$
- Each voter has a ranking over the alternatives
- $\mathrm{x}>_{\mathrm{i}} \mathrm{y}$ means that voter i prefers x to y
- Preference profile $=$ collection of all voters' rankings
- Voting rule $=$ function from preference profiles to alternatives

REMINDER: MANIPULATION

- A voting rule is strategyproof ($S P$) if a voter can never benefit from lying about his preferences:
$\forall<, \forall \mathrm{i} \in \mathrm{N}, \forall<_{\mathrm{i}}^{\prime}, \mathrm{f}(<) \geq_{\mathrm{i}} \mathrm{f}\left(<_{\mathrm{i}}^{\prime},<_{-\mathrm{i}}\right)$
- Theorem (Gibbard-Satterthwaite): If $\mathrm{m} \geq 3$ then any voting rule that is SP and onto is dictatorial

CIRCUMVENTING G-S

- Restricted preferences
- Money \Rightarrow mechanism design
- Computational complexity

SINGLE PEAKED PREFERENCES

- We want to choose a location for a public good (e.g., library) on a street
- Alternatives = possible locations
- Each voter has an ideal location (peak)
- The closer the library is to a voter's peak, the happier he is
- Suggestion: midpoint

MIDPOINT IS NOT SP

THE MEDIAN

- Select the median peak
- The median is a Condorcet winner!
- The median is onto
- The median is nondictatorial

THE MEDIAN IS SP

COMPLEXITY OF MANIPULATION

- Manipulation is always possible in theory
- But can we design voting rules where it is difficult in practice?
- Are there "reasonable" voting rules where manipulation is a hard computational problem? [Bartholdi et al., SC\&W 1989]

THE COMPUTATIONAL PROBLEM

- R-Manipulation problem:
- Given votes of nonmanipulators and a preferred candidate p
- Can manipulator cast vote that makes p (uniquely) win under R?
- Example: Borda, p=a

1	2	3
b	b	
a	a	
c	c	
d	d	

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
b	b	a
a	a	c
c	c	d
d	d	b

A greedy algorithm

- Rank p in first place
- While there are unranked alternatives:
- If there is an alternative that can be placed in next spot without preventing p from winning, place this alternative
- Otherwise return false

EXAMPLE: BORDA

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
b	b	a	b	b	a	b	b	a
a	a		a	a	b	a	a	c
c	c		c	c		c	c	
d	d		d	d		d	d	
$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
b	b	a	b	b	a	b	b	a
a	a	c	a	a	c	a	a	c
c	c	b	c	c	d	c	c	d
d	d		d	d		d	d	b

Carnegie Mellon University 12

EXAMPLE: COPELAND

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
a	b	e	e	a
b	a	c	c	
c	d	b	b	
d	e	a	a	
e	c	d	d	

Preference profile

	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}
\mathbf{a}	-	2	3	5	3
\mathbf{b}	3	-	2	4	2
\mathbf{c}	2	2	-	3	1
\mathbf{d}	0	0	1	-	2
\mathbf{e}	2	2	3	2	-

Pairwise elections

EXAMPLE: COPELAND

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
a	b	e	e	a
b	a	c	c	c
c	d	b	b	
d	e	a	a	
e	c	d	d	

Preference profile

	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}
\mathbf{a}	-	2	3	5	3
\mathbf{b}	3	-	2	4	2
\mathbf{c}	2	3	-	4	2
\mathbf{d}	0	0	1	-	2
\mathbf{e}	2	2	3	2	-

Pairwise elections

EXAMPLE: COPELAND

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
a	b	e	e	a
b	a	c	c	c
c	d	b	b	d
d	e	a	a	
e	c	d	d	

Preference profile

	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}
\mathbf{a}	-	2	3	5	3
\mathbf{b}	3	-	2	4	2
\mathbf{c}	2	3	-	4	2
\mathbf{d}	0	1	1	-	3
\mathbf{e}	2	2	3	2	-

Pairwise elections

EXAMPLE: COPELAND

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
a	b	e	e	a
b	a	c	c	c
c	d	b	b	d
d	e	a	a	e
e	c	d	d	

Preference profile

	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}
\mathbf{a}	-	2	3	5	3
\mathbf{b}	3	-	2	4	2
\mathbf{c}	2	3	-	4	2
\mathbf{d}	0	1	1	-	3
\mathbf{e}	2	3	3	2	-

Pairwise elections

EXAMPLE: COPELAND

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
a	b	e	e	a
b	a	c	c	c
c	d	b	b	d
d	e	a	a	e
e	c	d	d	b

Preference profile

	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}
\mathbf{a}	-	2	3	5	3
\mathbf{b}	3	-	2	4	2
\mathbf{c}	2	3	-	4	2
\mathbf{d}	0	1	1	-	3
\mathbf{e}	2	3	3	2	-

Pairwise elections

WHEN DOES THE ALG VORK?

- Theorem [Bartholdi et al., SCW 89]: Let R be a rule s.t. \exists function $s(<, x)$ such that:
- For every $<$ chooses a candidate that maximizes $\mathrm{s}(<, \mathrm{x})$
- $\{y: y<x\} \subseteq\left\{y: y<^{\prime} x\right\} \Rightarrow s(x,<) \leq s\left(x,<^{\prime}\right)$

Then the algorithm always decides R-Manipulation correctly

- Captures:
- All scoring rules, e.g., Borda
- Copeland: s is number of pairwise elections x wins
- Maximin: s is the worst pairwise election of x
- We prove the theorem on the board
- Proof appears in: Bartholdi, Tovey, and Trick. The computational difficulty of manipulating an election. SC\&W 1989, Theorem 1 (available on the course website)

VOTING RULES THAT ARE HARD TO MANIPULATE

- Natural rules
- Copeland with second order tie breaking [Bartholdi et al., SCW 89]
- STV [Bartholdi\&Orlin, SCW 91]
- Ranked Pairs [Xia et al., IJCAI 09]

Order pairwise elections by decreasing strength of victory Successively lock in results of pairwise elections unless it leads to cycle
Winner is the top ranked candidate in final order

- Can also "tweak" easy to manipulate voting rules [Conitzer\&Sandholm, IJCAI 03]

EXAMPLE: RANKED PAIRS

Carnegie Mellon University 25

EXAMPLE: RANKED PAIRS

Carnegie Mellon University 26

MAXIMIZING SOCIAL WELFARE

- Robobees need to decide on a joint plan (alternative)
- Many possible plans
- Each robobee (agent) has a numerical evluation (utility) for each alternative
- Want to maximize sum of utilities = social welfare
- Communication is restricted

MAXIMIZING SOCIAL WELFARE

- Approach 1:
communicate utilities
- May be infeasible
- Approach 2: each agent votes for favorite alternative (plurality)
- logm bits per agent
- May select a bad alternative

n/2-1 agents

$\mathrm{n} / 2+1$ agents

MAXIMIZING SOCIAL VELFARE

- Approach 3: each agent votes for an alternative with probability proportional to its utility
- Theorem (informal): if $\mathrm{n}=\omega(\mathrm{mlogm})$ then this approach gives a $1+o(1)$ approximation for the optimal social welfare in expectation [Caragiannis +P , AIJ 2011]

Voting rules as MLEs

- Choose 8 RNA designs to synthesize
- Assume that each player provides a ranking
- Each pair of designs is ranked correctly with
 probability $\mathrm{p}>1 / 2$

Voting rules as MLEs

- Goal: choose a set of 8 designs that maximizes the probability of containing the best design
- Theorem: if p is sufficiently close to $\frac{1}{2}$ then the set of 8 designs with highest Borda scores is such a set $[\mathrm{P}+$ Reddy + Shah $]$

