GRADUATE AI LECTURE 21: SOCIAL CHOICE II

TEACHERS: MARTIAL HEBERT ARIEL PROCACCIA (THIS TIME)

REMINDER: VOTING

- Set of voters $N = \{1, ..., n\}$
- Set of alternatives A, |A|=m
- Each voter has a ranking over the alternatives
- $x >_i y$ means that voter i prefers x to y
- *Preference profile* = collection of all voters' rankings
- *Voting rule* = function from preference profiles to alternatives

REMINDER: MANIPULATION

- A voting rule is strategyproof (SP) if a voter can never benefit from lying about his preferences:
 ∀<, ∀i∈N,∀<'i, f(<) ≥i f(<'i,<i)
- Theorem (Gibbard-Satterthwaite): If m≥3 then any voting rule that is SP and onto is dictatorial

CIRCUMVENTING G-S

- Restricted preferences
- Money \Rightarrow mechanism design
- Computational complexity

SINGLE PEAKED PREFERENCES

- We want to choose a location for a public good (e.g., library) on a street
- Alternatives = possible locations
- Each voter has an ideal location (peak)
- The closer the library is to a voter's peak, the happier he is
- Suggestion: midpoint

MIDPOINT IS NOT SP

THE MEDIAN

- Select the median peak
- The median is a Condorcet winner!
- The median is onto
- The median is nondictatorial

THE MEDIAN IS SP

COMPLEXITY OF MANIPULATION

- Manipulation is always possible in theory
- But can we design voting rules where it is difficult in practice?
- Are there "reasonable" voting rules where manipulation is a hard computational problem? [Bartholdi et al., SC&W 1989]

THE COMPUTATIONAL PROBLEM

- *R*-MANIPULATION problem:
 - Given votes of nonmanipulators and a preferred candidate p
 - Can manipulator cast
 vote that makes p
 (uniquely) win under R?
- Example: Borda, p=a

1	2	3
b	b	
a	a	
С	С	
d	d	

1	2	3
b	b	a
a	a	С
с	с	d
d	d	b

A GREEDY ALGORITHM

- Rank p in first place
- While there are unranked alternatives:
 - If there is an alternative that can be placed in next spot without preventing *p* from winning, place this alternative
 - Otherwise return false

EXAMPLE: BORDA

1	2	3	1	2	3	1	2	3
b	b	a	b	b	a	b	b	a
a	a		a	a	b	a	a	с
С	с		с	С		с	С	
d	d		d	d		d	d	
1	2	3	1	2	3	1	2	3
1 b	2 b	3 a	1 b	2 b	3 а	1 b	2 b	3 a
1 b a	2 b a	3 а с	1 b a	2 b a	3 а с	1 b a	2 b a	3 а с
1 b a c	2 b a c	3 a c b	1 b a c	2 b a c	3 a c d	1 b a c	2 b a c	3 a c d

1	2	3	4	5
a	b	е	е	a
b	a	С	С	
С	d	b	b	
d	е	a	a	
е	С	d	d	

Preference profile

	a	b	С	d	е
a	-	2	3	5	3
b	3	-	2	4	2
С	2	2	-	3	1
d	0	0	1	-	2
e	2	2	3	2	-

Pairwise elections

1	2	3	4	5
a	b	е	е	a
b	a	с	С	С
С	d	b	b	
d	е	a	a	
е	С	d	d	

Preference profile

	a	b	С	d	е
a	-	2	3	5	3
b	3	-	2	4	2
С	2	3	-	4	2
d	0	0	1	-	2
e	2	2	3	2	-

Pairwise elections

1	2	3	4	5
a	b	е	е	a
b	a	с	с	С
С	d	b	b	d
d	е	a	a	
е	с	d	d	

Preference profile

	a	b	С	d	е
a	-	2	3	5	3
b	3	-	2	4	2
С	2	3	-	4	2
d	0	1	1	-	3
е	2	2	3	2	-

Pairwise elections

1	2	3	4	5
a	b	е	е	a
b	a	С	С	С
С	d	b	b	d
d	е	a	a	е
е	С	d	d	

Preference profile

	a	b	С	d	е
a	-	2	3	5	3
b	3	-	2	4	2
С	2	3	-	4	2
d	0	1	1	-	3
е	2	3	3	2	-

Pairwise elections

1	2	3	4	5
a	b	е	е	a
b	a	С	с	С
С	d	b	b	d
d	е	a	a	е
е	С	d	d	b

Preference profile

	a	b	С	d	е
a	-	2	3	5	3
b	3	-	2	4	2
С	2	3	-	4	2
d	0	1	1	-	3
е	2	3	3	2	-

Pairwise elections

WHEN DOES THE ALG WORK?

- Theorem [Bartholdi et al., SCW 89]: Let R be a rule s.t. \exists function s(<,x) such that:
 - $\circ \quad \ \ \, \text{For every} < \text{chooses a candidate that maximizes } s(<,x)$
 - $\circ \qquad \{y: y < x\} \subseteq \{y: y < `x\} \Longrightarrow s(x, <) \le s(x, <`)$

Then the algorithm always decides R-MANIPULATION correctly

- Captures:
 - All scoring rules, e.g., Borda
 - Copeland: s is number of pairwise elections x wins
 - Maximin: s is the worst pairwise election of x
- We prove the theorem on the board
- Proof appears in: Bartholdi, Tovey, and Trick. The computational difficulty of manipulating an election. SC&W 1989, Theorem 1 (available on the course website)

VOTING RULES THAT ARE HARD TO MANIPULATE

- Natural rules
 - Copeland with second order tie breaking [Bartholdi et al., SCW 89]
 - STV [Bartholdi&Orlin, SCW 91]
 - Ranked Pairs [Xia et al., IJCAI 09]
 Order pairwise elections by decreasing strength of victory
 Successively lock in results of pairwise elections unless it leads to cycle
 - Winner is the top ranked candidate in final order
- Can also "tweak" easy to manipulate voting rules [Conitzer&Sandholm, IJCAI 03]

MAXIMIZING SOCIAL WELFARE

- Robobees need to decide on a joint plan (alternative)
- Many possible plans
- Each robobee (agent) has a numerical evluation (utility) for each alternative
- Want to maximize sum of utilities = *social welfare*
- Communication is restricted

MAXIMIZING SOCIAL WELFARE

- Approach 1: communicate utilities
 - May be infeasible
- Approach 2: each agent votes for favorite alternative (plurality)
 logm bits per agent
 May select a bad alternative

n/2 - 1 agents

n/2 + 1 agents

MAXIMIZING SOCIAL WELFARE

- Approach 3: each agent votes for an alternative with probability proportional to its utility
- Theorem (informal): if n=ω(mlogm) then this approach gives a 1+o(1) approximation for the optimal social welfare in expectation [Caragiannis+P, AIJ 2011]

VOTING RULES AS MLES

- Choose 8 RNA designs to synthesize
- Assume that each player provides a ranking
- Each pair of designs is ranked correctly with probability p>1/2

VOTING RULES AS MLES

- Goal: choose a set of 8 designs that maximizes the probability of containing the best design
- Theorem: if p is sufficiently close to ¹/₂ then the set of 8 designs with highest Borda scores is such a set [P+Reddy+Shah]