GRADUATE AI LECTURE 20: SOCIAL CHOICE I

TEACHERS: MARTIAL HEBERT ARIEL PROCACCIA (THIS TIME)

SOCIAL CHOICE THEORY

- A mathematical theory that deals with aggregation of individual preferences
- Origins in ancient Greece
- Formal foundations: 18th Century (Condorcet and Borda)
- 19th Century: Charles Dodgson
- 20th Century: Nobel prizes to Kenneth Arrow and Amartya Sen

COMPUTATIONAL SOCIAL CHOICE

- Two-way interaction with AI
- AI \Rightarrow social choice
 - Algorithms and computational complexity
 - Machine learning in social choice
 - Knowledge representation
 - Markov decision processes

COMPUTATIONAL SOCIAL CHOICE

- Social choice \Rightarrow AI
 - Multiagent
 systems: reducing
 communication
 - Human
 computation:
 aggregating
 peoples' opinions

THE VOTING MODEL

- Set of voters $N = \{1, ..., n\}$
- Set of alternatives A, |A|=m
- Each voter has a ranking over the candidates
- $x >_i y$ means that voter i prefers x to y
- *Preference profile* = collection of all voters' rankings

1	2	3
a	с	b
b	a	С
с	b	a

VOTING RULES

- Voting rule = function from preference profiles to alternatives that specifies the winner of the election
- Plurality
 - Each voter awards one point to top alternative
 - Alternative with most points wins
 - Used in almost all political elections

- Borda count
 - Each voter awards m-k points to alternative ranked k'th
 - Alternative with most points wins
 - Proposed in the 18th Century by the chevalier de Borda
 - Used in the national assembly of Slovenia
 - Similar to rule used in the Eurovision song contest

Lordi, Eurovision 2006 winners

- Veto
 - Each voter vetoes his least preferred alternative
 - Alternative with least vetoes wins
- Positional scoring rules
 - Defined by a vector $(s_1,...,s_m)$
 - $_{\circ}$ ~ Each voter gives s_k points to k'th position
 - Plurality: (1,0,...,0); Borda: (m-1,m-2,...,0), Veto: (1,...,1,0)

- a beats b in a *pairwise election* if the majority of voters prefer a to b
- Plurality with runoff
 - First round: two alternatives with highest plurality scores survive
 - Second round: pairwise election between these two alternatives

- Single Transferable vote (STV)
 - \circ m-1 rounds
 - In each round, alternative with least plurality votes is eliminated
 - Alternative left standing is the winner
 - Used in Ireland, Malta, Australia, and New Zealand (and Cambridge, MA)

STV: EXAMPLE

2 voters	2 voters	1 voter
a	b	с
b	a	d
С	d	b
d	с	a

2 voters	2 voters	1 voter
a	b	с
b	a	b
с	с	a

2 voters	2 voters	1 voter
a	b	b
b	a	a

2	2	1
voters	voters	voter
b	b	b

Carnegie Mellon University 11

MARQUIS DE CONDORCET

- 18th Century French Mathematician, philosopher, political scientist
- One of the leaders of the French revolution
- After the revolution became a fugitive
- His cover was blown and he died mysteriously in prison

CONDORCET WINNER

- Condorcet winner = alternative that beats every other alternative in pairwise election
- Condorcet paradox = Condorcet winner may not exist
- Condorcet criterion = elect a Condorcet winner if one exists
- Does plurality satisfy criterion? Borda?

1	2	3
a	с	b
b	a	с
с	b	a

MORE VOTING RULES

- Copeland
 - Alternative's score is #alternatives it beats in pairwise elections
 - Why does Copeland satisfy the Condorcet criterion?
- Maximin
 - Score of x is $\min_{y} |\{i \in N: x >_i y\}|$
 - Why does Maximin satisfy the Condorcet criterion?

AWESOME EXAMPLE

- Plurality: a
- Borda: b
- Condorcet winner: c
- STV: d

e

• Plurality with runoff:

33 voters	16 voters	3 voters	8 voters	18 voters	22 voters
a	b	С	С	d	е
b	d	d	е	е	С
С	С	b	b	С	b
d	е	a	d	b	d
е	a	е	a	a	a

Carnegie Mellon University 15

MANIPULATION

- Using Borda count
- Top profile: b wins
- Bottom profile: a wins
- By changing his vote, voter 3 achieves a better outcome!

1	2	3
b	b	a
a	a	b
С	с	с
d	d	d

1	2	3
b	b	a
a	a	С
С	с	d
d	d	b

STRATEGYPROOFNESS

- A voting rule is strategyproof (SP) if a voter can never benefit from lying about his preferences:
 ∀<, ∀i∈N,∀<'_i, f(<) ≥_i f(<'_i,<_{-i})
- If there are two candidates then plurality is SP

GIBBARD-SATTERTHWAITE

- A voting rule is *dictatorial* if there is a voter who always gets his most preferred alternative
- A voting rule is *onto* if any alternative can win
- Theorem (Gibbard-Satterthwaite): If m≥3 then any voting rule that is SP and onto is dictatorial
- In other words, any voting rule that is onto and nondictatorial is manipulable

PROOF OF G-S THEOREM

- We prove the following statement on the board
- If m≥3 and n=2 then any voting rule that is SP and onto is dictatorial
- The proof also appears in:
 L.-G. Svensson. The proof of the Gibbard-Satterthwaite Theorem revisited, Theorem 1 (available from course website)

LEMMAS

- A voting rule satisfies monotonicity if: $f(<) = a, \forall i \in N, x \in A, [x \le a \Rightarrow x \le' a]$ implies that f(<') = a
- Lemma: Any SP voting rule is monotonic
- A voting rule satisfies Pareto optimality (PO) if: $\forall i \in N, x >_i y \Rightarrow f(<) \neq y$
- Lemma: Any SP and onto voting rule is PO