
Graduate AI
Lecture 16: Planning 2

Teachers:
Martial Hebert
Ariel Procaccia (this time)

Reminder

• State is a conjunction of conditions, e.g.,
at(Truck1,Shadyside)∧at(Truck2,Oakland)

• States are transformed via operators that
have the form
Preconditions ⇒ Effects (postconditions)

2

Reminder

• Pre is a conjunction of positive and negative conditions
that must be satisfied to apply the operation

• Effect is a conjunction of positive and negative
conditions that become true when the operation is
applied

• We are given the initial state
• We are also given the goals, a conjunction of positive

and negative conditions

3

Planning as search

• Search from initial state to goal
• Can use standard search techniques,

including heuristic search

4

At(P1,A)
At(P2,A)

At(P1,B)
At(P2,A)

At(P1,A)
At(P2,B)

Fly(P1,A,B)

Fly(P2,A,B)

Potential obstacles
• Example: inefficient search

o Operation Buy(isbn) with no preconditions and effect
Own(isbn) for each of the 10 billion ISBN numbers

o Uninformed search must enumerate all options
• Example: large state space

o 10 airports, each has 5 planes and 20 pieces of cargo
o Goal: move the cargo at airport A to B
o Search graph up to the depth of the obvious solution can have

> 10100 nodes

• From 1961 to 1998 forward search was
considered too inefficient to be practical

5

Backward search

• Searching backward from goal to initial
state

• Can help in the examples
• Hard to come up with heuristics ⇒

modern systems use forward search with
killer heuristics

6

Heuristics for planning

• Define a relaxed problem that is easier to
solve and gives an admissible heuristic

• Two general approaches: add edges to the
search graph or group multiples nodes
together

7

Ignore preconditions

• Heuristic drops all preconditions from operations
• Any goal condition can be achieves in one step
• Complications:

1. Some operations achieve multiple goals
2. Some operations undo the effects of others

• Ignore 2 but not 1: remove preconditions and all
effects except goal conditions

• Count min number of operations s.t. the union of
their effects contains goals

8

Set cover

• This is exactly the set
cover problem

• Problem is NP-hard
• Hard to approximate

to a factor better
than logn

• Approximation is
inadmissible

9

g1

g4

g5 g6

g2

g3

Ignore preconditions
• Possible to ignore specific preconditions
• Sliding block puzzle;
• On(t,s1)∧Blank(s2)∧Adjacent(s1,s2) ⇒

On(t,s2)∧Blank(s1)∧¬On(t,s1)∧¬Blank(s2)
• Removing Blank(s2)∧Adjacent(s1,s2) gives...

o #misplaced tiles heuristic
• Removing Blank(s2) gives...

o Manhattan distance heuristic
• Can derive domain-specific heuristics

10

5

4

6 1

8 7

3

2

5 4 6

1

8 7

3 2

Example state

Goal state

Ignore delete lists
• Assume that goals and preconditions contain only

positive literals
o Can rewrite if not

• Remove delete lists from all operations
• Make monotonic progress towards goals
• Still NP-hard to find a solution (proved in lecture 15,

slide 19)
o Why doesn’t this follow from NP-hardness of set cover?

• “Hill-climbing” works well

11

Hill climbing

12

Hoffman, JAIR 2005

State abstraction

• Relaxed problem is still an expensive way to
compute a heuristic if there are many states

• Consider air cargo problem with 10 airports, 50
planes, 200 pieces of cargo

• #states = 1050 × (50+10)200 > 10250
• Assume all packages are in 5 airports, packages

in airport have the same destination
⇒ 5 planes and 5 packages

• #states = 105 × (5+10)5 < 1011

13

Planning graphs

• Leveled graph: vertices organized into levels,
with edges only between levels

• Two types of vertices on alternating levels:
o Conditions
o Operations

• Two types of edges:
o Precondition: condition to operation
o Effect: operation to condition

14

Generic planning graph

15

…
…

…

Condition

Operation

No-Op

Precondition
Effect

Slide based on Brafman which in turn is
based on Ambite, Blyth, and Weld

Graph construction
• S0 contains conditions that hold in initial state
• Add operation to level Oi if its preconditions appear

in level Si
• Add condition to level Si if it is the effect of an

operation in level Oi-1 (no-op action also possible)
• Idea: Si contains all conditions that could hold at

time i; Oi contains all operations that could have
their preconditions satisfied at time i

• Can optimistically estimate how many steps it takes
to reach a goal

16

Mutual exclusion

• Two operations or conditions are mutually
exclusive (mutex) if no valid plan can contain
both

• A bit more formally:
o Two operations are mutex if their preconditions or

effects are mutex
o Two conditions are mutex if one is the negation of

the other, or all actions that achieve them are mutex
• Even more formally...

17

Mutex cases

• Inconsistent effects (two
ops): one operation
negates the effect of the
other

• Interference (two ops): an
effect of one operation
negates precondition of
other

18

Inconsistent Effects

Interference

Slide based on Brafman which in turn is
based on Ambite, Blyth, and Weld

Mutex cases

• Competing needs (two ops):
a precondition of one
operation is mutex with a
precondition of the other

• Inconsistent support (two
conditions): every possible
pair of operations that
achieve both conditions is
mutex

19

Inconsistent Support

Competing Needs

Slide based on Brafman which in turn is
based on Ambite, Blyth, and Weld

Dinner date example

• Initial state: garbage ∧ cleanHands ∧ quiet
• Goals: dinner ∧ present ∧ ¬garbage
• Actions:

o Cook: cleanHands ⇒ dinner
o Wrap: quiet ⇒ present
o Carry: none ⇒ ¬garbage ∧ ¬ cleanHands
o Dolly: none ⇒ ¬garbage ∧ ¬ quiet

• What’s the plan?

20
Slide based on Brafman which in turn is
based on Ambite, Blyth, and Weld

Dinner date example

21

cleanHands

Carry

garb garb

quiet

¬garb

cleanHands

¬cleanHands

quiet

¬quiet

dinner

present

Dolly

Cook

Wrap

No-Op

No-Op

No-Op

Slide based on Brafman which in turn is
based on Ambite, Blyth, and Weld

Inconsistent
support

Interference

Dinner date example

22

Carry

garb

quiet

Dolly

Cook

Wrap

No-Op

No-Op

No-Op

garb

¬garb

cleanHands

¬cleanHands

quiet

¬quiet

dinner

present

No-Op

garb

¬garb

cleanHands

¬cleanHands

quiet

¬quiet

dinner

present

No-Op

No-Op

No-Op

No-Op

No-Op

No-Op

No-Op
Carry

Dolly

Cook

Wrap

cleanHands

Slide based on Brafman which in turn is
based on Ambite, Blyth, and Weld

Observation 1

23

O1

p

¬r No-Op

No-Op

No-Op

p

¬p

¬q

¬r No-Op

p

¬p

¬q

¬r

No-Op

No-Op

No-Op
O1

O2

¬q

q

Conditions monotonically increase
(always carried forward by no-ops)

Slide based on Brafman which in turn is
based on Ambite, Blyth, and Weld

Observation 2

24

O1

p

¬r No-Op

No-Op

No-Op

p

¬p

¬q

¬r No-Op

p

¬p

¬q

¬r

No-Op

No-Op

No-Op
O1

O2

¬q

q

Operations monotonically increase

Slide based on Brafman which in turn is
based on Ambite, Blyth, and Weld

Observation 3

25
Slide based on Brafman which in turn is
based on Ambite, Blyth, and Weld

O1

p

¬r No-Op

No-Op

No-Op

p

¬q

¬r

¬q

Proposition mutex relationships
monotonically decrease

Observation 4

• Operation mutexes monotonically decrease
• Inconsistent effects and interference are

properties of the operations themselves ⇒ hold
at every level

• Competing needs: proposition mutexes are
monotonically decreasing

• To be formal, need to do a double induction on
proposition and operation mutexes

26

Leveling off

• As a corollary of the observations, we see
that the planning graph levels off
o Consecutive levels become identical

• Proof:
o Upper bound on #operations and

#conditions
o Lower bound of 0 on #mutexes

27

Heuristics from graphs
• Level cost of goal g = level where g first

appears
• To estimate the cost of all goals:

o Max level: max level cost of any goal
(admissible?)

o Level sum: sum of level costs (admissible?)
o Set level: level at which all goals appear

without any pair being mutex (admissible?)

28

The Graphplan algorithm

1. Grow the planning graph until all goals
are reachable and not mutex
(If planning graph levels off first, fail)

2. Call EXTRACT-SOLUTION on current
planning graph

3. If none found, add a level to the planning
graph and try again

29
Slide based on Brafman which in turn is
based on Ambite, Blyth, and Weld

Extract-Solution
• Search where each state corresponds to a level and a set

of unsatisfied goals
• Initial state is the last level of the planning graph, along

with the goals of the planning problem
• Actions available at level Si are to select any conflict-free

subset of operations in Ai-1 whose effects cover the goals
in the state

• Resulting state has level Si-1 and its goals are the
preconditions for selected actions

• Goal is to reach a state at level S0

30

Extract-Solution illustrated

31
Slide based on Brafman which in turn is
based on Ambite, Blyth, and Weld

Graphplan guarantees

• The size of the t-level planning graph and
the time to create it are polynomial in t,
#operations, #conditions

• Graphplan returns a plan if one exists, and
returns failure if one does not exists

32

	Slide Number 1
	Reminder
	Reminder
	Planning as search
	Potential obstacles
	Backward search
	Heuristics for planning
	Ignore preconditions
	Set cover
	Ignore preconditions
	Ignore delete lists
	Hill climbing
	State abstraction
	Planning graphs
	Generic planning graph
	Graph construction
	Mutual exclusion
	Mutex cases
	Mutex cases
	Dinner date example
	Dinner date example
	Dinner date example
	Observation 1
	Observation 2
	Observation 3
	Observation 4
	Leveling off
	Heuristics from graphs
	The Graphplan algorithm
	Extract-Solution
	Extract-Solution illustrated
	Graphplan guarantees

