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Reminder 

• State is a conjunction of conditions, e.g., 
at(Truck1,Shadyside)∧at(Truck2,Oakland)  

• States are transformed via operators that 
have the form  
Preconditions ⇒ Effects (postconditions) 
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Reminder 

• Pre is a conjunction of positive and negative conditions 
that must be satisfied to apply the operation 

• Effect is a conjunction of positive and negative 
conditions that become true when the operation is 
applied 

• We are given the initial state 
• We are also given the goals, a conjunction of positive 

and negative conditions 
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Planning as search 

• Search from initial state to goal 
• Can use standard search techniques, 

including heuristic search  
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Potential obstacles 
• Example: inefficient search 

o Operation Buy(isbn) with no preconditions and effect 
Own(isbn) for each of the 10 billion ISBN numbers 

o Uninformed search must enumerate all options 
• Example: large state space 

o 10 airports, each has 5 planes and 20 pieces of cargo 
o Goal: move the cargo at airport A to B 
o Search graph up to the depth of the obvious solution can have 

> 10100 nodes 

• From 1961 to 1998 forward search was 
considered too inefficient to be practical 
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Backward search 

• Searching backward from goal to initial 
state 

• Can help in the examples 
• Hard to come up with heuristics ⇒ 

modern systems use forward search with 
killer heuristics 
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Heuristics for planning 

• Define a relaxed problem that is easier to 
solve and gives an admissible heuristic 

• Two general approaches: add edges to the 
search graph or group multiples nodes 
together 
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Ignore preconditions 

• Heuristic drops all preconditions from operations 
• Any goal condition can be achieves in one step 
• Complications: 

1. Some operations achieve multiple goals 
2. Some operations undo the effects of others 

• Ignore 2 but not 1: remove preconditions and all 
effects except goal conditions 

• Count min number of operations s.t. the union of 
their effects contains goals 
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Set cover 

• This is exactly the set 
cover problem 

• Problem is NP-hard 
• Hard to approximate 

to a factor better 
than logn 

• Approximation is 
inadmissible 
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Ignore preconditions 
• Possible to ignore specific preconditions 
• Sliding block puzzle;  
• On(t,s1)∧Blank(s2)∧Adjacent(s1,s2) ⇒ 

On(t,s2)∧Blank(s1)∧¬On(t,s1)∧¬Blank(s2) 
• Removing Blank(s2)∧Adjacent(s1,s2) gives... 

o  #misplaced tiles heuristic 
• Removing Blank(s2) gives... 

o  Manhattan distance heuristic 
• Can derive domain-specific heuristics 
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Ignore delete lists 
• Assume that goals and preconditions contain only 

positive literals 
o Can rewrite if not 

• Remove delete lists from all operations 
• Make monotonic progress towards goals 
• Still NP-hard to find a solution (proved in lecture 15, 

slide 19) 
o Why doesn’t this follow from NP-hardness of set cover? 

• “Hill-climbing” works well 
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Hill climbing 
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Hoffman, JAIR 2005 



State abstraction 

• Relaxed problem is still an expensive way to 
compute a heuristic if there are many states 

• Consider air cargo problem with 10 airports, 50 
planes, 200 pieces of cargo 

• #states = 1050 × (50+10)200 > 10250 
• Assume all packages are in 5 airports, packages 

in airport have the same destination  
⇒ 5 planes and 5 packages 

• #states = 105 × (5+10)5 < 1011 
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Planning graphs 

• Leveled graph: vertices organized into levels, 
with edges only between levels 

• Two types of vertices on alternating levels: 
o Conditions 
o Operations 

• Two types of edges: 
o Precondition: condition to operation 
o Effect: operation to condition 
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Generic planning graph 
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Graph construction 
• S0 contains conditions that hold in initial state 
• Add operation to level Oi if its preconditions appear 

in level Si 
• Add condition to level Si if it is the effect of an 

operation in level Oi-1 (no-op action also possible) 
• Idea: Si contains all conditions that could hold at 

time i; Oi contains all operations that could have 
their preconditions satisfied at time i 

• Can optimistically estimate how many steps it takes 
to reach a goal 
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Mutual exclusion 

• Two operations or conditions are mutually 
exclusive (mutex) if no valid plan can contain 
both 

• A bit more formally: 
o Two operations are mutex if their preconditions or 

effects are mutex 
o Two conditions are mutex if one is the negation of 

the other, or all actions that achieve them are mutex 
• Even more formally... 
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Mutex cases 

• Inconsistent effects (two 
ops): one operation 
negates the effect of the 
other 

• Interference (two ops): an 
effect of one operation 
negates precondition of 
other 
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Slide based on Brafman which in turn is 
based on Ambite, Blyth, and Weld 



Mutex cases 

• Competing needs (two ops): 
a precondition of one 
operation is mutex with a 
precondition of the other 

• Inconsistent support (two 
conditions): every possible 
pair of operations that 
achieve both conditions is 
mutex 
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Slide based on Brafman which in turn is 
based on Ambite, Blyth, and Weld 



Dinner date example 

• Initial state: garbage ∧ cleanHands ∧ quiet 
• Goals: dinner ∧ present ∧ ¬garbage 
• Actions: 

o Cook: cleanHands ⇒ dinner 
o Wrap: quiet ⇒ present 
o Carry: none ⇒ ¬garbage ∧ ¬ cleanHands  
o Dolly: none ⇒ ¬garbage ∧ ¬ quiet 

• What’s the plan? 
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Dinner date example 
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Dinner date example 
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Observation 1 
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Observation 2 

24 

O1 

p 

¬r No-Op 

No-Op 

No-Op 

p 

¬p 

¬q 

¬r No-Op 

p 

¬p 

¬q 

¬r 

No-Op 

No-Op 

No-Op 
O1 

O2 

¬q 

q 

Operations monotonically increase 

Slide based on Brafman which in turn is 
based on Ambite, Blyth, and Weld 



Observation 3 
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Observation 4 

• Operation mutexes monotonically decrease 
• Inconsistent effects and interference are 

properties of the operations themselves ⇒ hold 
at every level 

• Competing needs: proposition mutexes are 
monotonically decreasing  

• To be formal, need to do a double induction on 
proposition and operation mutexes 
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Leveling off 

• As a corollary of the observations, we see 
that the planning graph levels off 
o Consecutive levels become identical 

• Proof:  
o Upper bound on #operations and 

#conditions 
o Lower bound of 0 on #mutexes 
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Heuristics from graphs 
• Level cost of goal g = level where g first 

appears 
• To estimate the cost of all goals: 

o Max level: max level cost of any goal 
(admissible?) 

o Level sum: sum of level costs (admissible?) 
o Set level: level at which all goals appear 

without any pair being mutex (admissible?) 
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The Graphplan algorithm 

1. Grow the planning graph until all goals 
are reachable and not mutex 
(If planning graph levels off first, fail) 

2. Call EXTRACT-SOLUTION on current 
planning graph 

3. If none found, add a level to the planning 
graph and try again 
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Slide based on Brafman which in turn is 
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Extract-Solution 
• Search where each state corresponds to a level and a set 

of unsatisfied goals 
• Initial state is the last level of the planning graph, along 

with the goals of the planning problem 
• Actions available at level Si are to select any conflict-free 

subset of operations in Ai-1 whose effects cover the goals 
in the state 

• Resulting state has level Si-1 and its goals are the 
preconditions for selected actions 

• Goal is to reach a state at level S0 
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Extract-Solution illustrated 
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Slide based on Brafman which in turn is 
based on Ambite, Blyth, and Weld 



Graphplan guarantees 

• The size of the t-level planning graph and 
the time to create it are polynomial in t, 
#operations, #conditions 

• Graphplan returns a plan if one exists, and 
returns failure if one does not exists 
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