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Planning: big picture 

• AI studies rational action 
• Devising a plan of action to achieve one’s 

goal is a critical part of AI 
• In fact planning is glorified search  
• Similarly to CSPs, we will consider a 

factored representation of states 
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Propositional STRIPS planning 

• STRIPS = Stanford Research Institute 
Problem Solver (1971) 

• State is a conjunction of conditions, e.g., 
at(Truck1,Shadyside)∧at(Truck2,Oakland)  

• States are transformed via operators that 
have the form  
Preconditions ⇒ Postconditions) 
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Propositional STRIPS planning 

• Pre is a conjunction of positive and negative conditions 
that must be satisfied to apply the operation 

• Post is a conjunction of positive and negative conditions 
that become true when the operation is applied 

• We are given the initial state 
• We are also given the goals, a conjunction of positive 

and negative conditions 
• We think of a state as a set of positive conditions, hence 

an operation has an “add list” and a “delete list” 
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Blocks world 
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Blocks world 

• Conditions: on(A,B), on(A,C), on(B,A), 
on(B,C), on(C,A), on(C,B), clear(A), clear(B), 
clear(C), on(A,Table), on(B,Table), on(C,Table) 

• Operators for moving blocks 
o Move C from A to the table: 

clear(C) ∧ on(C,A)  
⇒ on(C,Table) ∧ clear(A) ∧ ¬on(C,A) 

o Move A from the table to B 
clear(A) ∧ on(A,Table) ∧ clear(B) 
⇒ on(A,B) ∧ ¬clear(B) and ¬on(A,Table) 
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The plan 

• State: on(C,A), 
on(A,Table), 
on(B,Table), clear(B), 
clear(C)  

• Action: 
clear(C) ∧ on(C,A)  
⇒ on(C,Table) ∧ 
clear(A) ∧ ¬on(C,A) 
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The plan 

• State: on(A,Table), 
on(B,Table), clear(B), 
clear(C), on(C,Table), 
clear(A)  

• Action: 
clear(C) ∧ on(B,Table) ∧ 
clear(B) 
⇒ on(B,C) ∧ ¬clear(C) 
and ¬on(B,Table) 
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The plan 

• State: on(A,Table), 
clear(B), on(C,Table), 
clear(A), on(B,C) 

• Action: 
clear(B) ∧ on(A,Table) ∧ 
clear(A) 
⇒ on(A,B) ∧ ¬clear(B) 
and ¬on(A,Table) 
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The plan 

• State: on(C,Table), 
clear(A), on(B,C), 
on(A,B) 

• Goals: on(A,B), 
on(B,C) 
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Complexity of planning 

• PLANSAT is the problem of determining 
whether a given planning problem is 
satisfiable 

• In general PLANSAT is PSPACE-
complete 

• We will look at some special cases 
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Complexity of Planning 

• Theorem 1. Assume that actions have 
only positive preconditions and a single 
postcondition. Then SATPLAN is in P  
[T. Bylander. The Computational Complexity of 
Propositional STRIPS Planning. AIJ 1994] 

• Theorem 2. Blocks world problems can be 
encoded as above 

• Silly corollary. Blocks world problems can be 
solved in polynomial time (Duh) 
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Proof of Theorem 2 
• We will convert blocks world operators to operators that 

have only positive preconditions and a single postcondition 
• Let the blocks be B1,…,Bn  

• Conditions: Bi is not on top of Bj, off(i,j) 
• If Bi is clear, off(k,i) is true for all k  
• If Bi is on the table, off(i,k) is true for all k 
• Move Bi from the top of Bj to the table:  
⋀ off(k,i)𝑘  ∧ ⋀ off(k,j)𝑘≠𝑖  ⇒ off(i,j) 

• Move Bi from the table on top of Bj: 
⋀ off(k,i)𝑘  ∧ ⋀ off(i,k)𝑘  ∧ ⋀ off(k,j)𝑘  ⇒ ¬off(i,j) ∎ 
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Proof of Theorem 1 

• Claim. It is sufficient to consider plans that first 
make conditions true, then make conditions false 

• Proof: 
o Suppose that oi and oi+1 are adjacent operators s.t. 

the postcondition p of oi is negative and the 
postcondition q of oi+1 is positive 

o If p=q then we can delete oi because its effect is 
reversed 

o Otherwise, can switch oi and oi+1 ∎ 
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Proof of Theorem 1 
• Thus, if there is a solution, there is an 

intermediate state S such that 
o S can be reached from the initial state using 

operations with positive postconditions 
o The positive goals are a subset of S 
o Negative goals can be achieved via operations 

with negative postconditions 
• Search for an intermediate state S with 

these properties 
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Proof of Theorem 1 

• Implement procedure TurnOn(X): given 
set of conditions X, find maximal state S 
such that S∩X=φ that can be reached 
from initial state using operators with 
positive postconditions 
o Preconditions are positive, so: 
o Simply apply all such operators until it 

makes no difference 
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Proof of Theorem 1 
• Denote S’ the intermediate state S after 

removing negative goals 
• Implement procedure TurnOff(S): find the 

maximal S’’ such that S’ is reachable from 
S’’ using operators with negative 
postconditions 
o Simply search backwards from S’ and reverse 

operators with (i) negative postconditions, 
(ii) preconditions in S 
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Proof of Theorem 1 
• In the first iteration, if 

positive goals are not 
satisfied by S, there is 
no way to achieve 
them 

• If S\S’≠φ, it is 
impossible to remove 
these conditions; must 
be added to X 

• X grows monotonically 
⇒ polynomial time 
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X = φ 
loop 
   S = TurnOn(X) 
   If S does not contain positive   
 goals then return reject 
   S’ = TurnOff(S) 
   If S=S’ then return accept 
   X = X ∪ (S\S’) 
   If X intersects with initial 
 state then return reject 



More on complexity 
• We prove the following statement on the board 
• The proof also appears in:  

T. Bylander. The Computational Complexity of 
Propositional STRIPS Planning. AIJ 1994 (link on 
course website) 

• Theorem. Assume that actions have only positive 
postconditions. Then SATPLAN is NP-complete 
[Bylander 94, Theorem 3.5 on page 15] 

• Corollary. This is true even if actions have one 
precondition and one positive postcondition 
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