

PLANNING: BIG PICTURE

- AI studies rational action
- Devising a plan of action to achieve one's goal is a critical part of AI
- In fact planning is glorified search
- Similarly to CSPs, we will consider a factored representation of states

PROPOSITIONAL STRIPS PLANNING

- STRIPS = Stanford Research Institute Problem Solver (1971)
- State is a conjunction of **conditions**, e.g., at(Truck₁,Shadyside) \land at(Truck₂,Oakland)
- States are transformed via **operators** that have the form
 - $Preconditions \Rightarrow Postconditions)$

PROPOSITIONAL STRIPS PLANNING

- Pre is a conjunction of positive and negative conditions that must be satisfied to apply the operation
- Post is a conjunction of positive and negative conditions that become true when the operation is applied
- We are given the initial state
- We are also given the **goals**, a conjunction of positive and negative conditions
- We think of a state as a set of positive conditions, hence an operation has an "add list" and a "delete list"

BLOCKS WORLD

BLOCKS WORLD

- Conditions: on(A,B), on(A,C), on(B,A), on(B,C), on(C,A), on(C,B), clear(A), clear(B), clear(C), on(A,Table), on(B,Table), on(C,Table)
- Operators for moving blocks
 - Move C from A to the table: $clear(C) \wedge on(C,A)$ \Rightarrow on(C,Table) \land clear(A) \land \neg on(C,A)
 - Move A from the table to B $clear(A) \wedge on(A,Table) \wedge clear(B)$ \Rightarrow on(A,B) $\land \neg$ clear(B) and \neg on(A,Table)

- State: on(C,A),
 on(A,Table),
 on(B,Table), clear(B),
 clear(C)
- Action: $\operatorname{clear}(C) \wedge \operatorname{on}(C,A)$ $\Rightarrow \operatorname{on}(C,\operatorname{Table}) \wedge$ $\operatorname{clear}(A) \wedge \operatorname{\neg on}(C,A)$

- State: on(A,Table),
 on(B,Table), clear(B),
 clear(C), on(C,Table),
 clear(A)
- Action: $clear(C) \land on(B,Table) \land clear(B)$ $\Rightarrow on(B,C) \land \neg clear(C)$ and $\neg on(B,Table)$

- State: on(A,Table), clear(B), on(C,Table), clear(A), on(B,C)
- Action: $clear(B) \land on(A,Table) \land$ clear(A) $\Rightarrow on(A,B) \land \neg clear(B)$ and $\neg on(A,Table)$

- State: on(C,Table), clear(A), on(B,C), on(A,B)
- Goals: on(A,B), on(B,C)

COMPLEXITY OF PLANNING

- PLANSAT is the problem of determining whether a given planning problem is satisfiable
- In general PLANSAT is PSPACEcomplete
- We will look at some special cases

COMPLEXITY OF PLANNING

- Theorem 1. Assume that actions have only positive preconditions and a single postcondition. Then SATPLAN is in P T. Bylander. The Computational Complexity of Propositional STRIPS Planning. AIJ 1994]
- Theorem 2. Blocks world problems can be encoded as above
- Silly corollary. Blocks world problems can be solved in polynomial time (Duh)

- We will convert blocks world operators to operators that have only positive preconditions and a single postcondition
- Let the blocks be $B_1,...,B_n$
- Conditions: B_i is *not* on top of B_i , off(i,j)
- If B_i is clear, off(k,i) is true for all k
- If B_i is on the table, off(i,k) is true for all k
- Move B_i from the top of B_j to the table: $\Lambda_k \operatorname{off}(k,i) \wedge \Lambda_{k\neq i} \operatorname{off}(k,j) \Rightarrow \operatorname{off}(i,j)$
- Move B_i from the table on top of B_j : $\Lambda_k \text{ off}(k,i) \wedge \Lambda_k \text{ off}(i,k) \wedge \Lambda_k \text{ off}(k,j) \Rightarrow \neg \text{off}(i,j) \blacksquare$

• Claim. It is sufficient to consider plans that first make conditions true, then make conditions false

• Proof:

- Suppose that o_i and o_{i+1} are adjacent operators s.t. the postcondition p of o_i is negative and the postcondition q of o_{i+1} is positive
- If p=q then we can delete o_i because its effect is reversed
- Otherwise, can switch o_i and o_{i+1}

- Thus, if there is a solution, there is an intermediate state S such that
 - S can be reached from the initial state using operations with positive postconditions
 - The positive goals are a subset of S
 - Negative goals can be achieved via operations with negative postconditions
- Search for an intermediate state S with these properties

- Implement procedure TurnOn(X): given set of conditions X, find maximal state S such that $S \cap X = \phi$ that can be reached from initial state using operators with positive postconditions
 - Preconditions are positive, so:
 - Simply apply all such operators until it makes no difference

- Denote S' the intermediate state S after removing negative goals
- Implement procedure TurnOff(S): find the maximal S'' such that S' is reachable from S" using operators with negative postconditions
 - Simply search backwards from S' and reverse operators with (i) negative postconditions, (ii) preconditions in S

- In the first iteration, if positive goals are not satisfied by S, there is no way to achieve them
- If $S \setminus S' \neq \emptyset$, it is impossible to remove these conditions; must be added to X
- X grows monotonically \Rightarrow polynomial time

```
X = \phi
loop
  S = TurnOn(X)
  If S does not contain positive
       goals then return reject
  S' = TurnOff(S)
  If S=S' then return accept
  X = X \cup (S \setminus S')
  If X intersects with initial
       state then return reject
```

MORE ON COMPLEXITY

- We prove the following statement on the board
- The proof also appears in: T. Bylander. The Computational Complexity of Propositional STRIPS Planning. AIJ 1994 (link on course website)
- Theorem. Assume that actions have only positive postconditions. Then SATPLAN is NP-complete [Bylander 94, Theorem 3.5 on page 15]
- Corollary. This is true even if actions have one precondition and one positive postcondition

