GRADUATE AI Lecture 14: Constraint Satisfaction 2

TEACHERS: MARTIAL HEBERT ARIEL PROCACCIA (THIS TIME)

Reminder

- CSPs consist of:
 - Variables
 - Domains
 - Constraints: legal tuples of values for subsets of variables
- Goal: complete and consistent assignment
- Example: graph coloring

How hard are CSPs?

- In theory, solving a general CSP is NP-c
 - Obviously in NP
 - Captures graph coloring so NP-hard
- In practice, CSPs are often easy to solve
- Where are the hard problems?
- Identify **order parameter** to predict problem difficulty

IS THIS GRAPH 4-COLORABLE?

IS THIS GRAPH 4-COLORABLE?

AVERAGE DEGREE

- Order parameter for graph coloring: average degree $= 2|\mathbf{E}|/|\mathbf{V}|$
- For a random graph, what is the probability of being colorable, as a function of the average degree?
- Should be 1 at x=0 and go down to 0

PHASE TRANSITION

PEAK IN DIFFICULTY

COINCIDENCE?

- Algorithm used: backtracking search with the heuristics we discussed
- Graph coloring is most difficult around the **critical value** of the order parameter
- In that region problems are neither underconstrained nor overconstrained

GENERATING HARD GRAPHS

- We want to test our CSP solvers with hard problems!
- Example: graph coloring
- First, reduce the graph using operators shown on next slide
- Second, concentrate on graphs with avg. degree around the critical value

REDUCTION OPERATORS

Underconstrained

REDUCTION OPERATORS

Subsumed

REDUCTION OPERATORS

Connected to (k-1)-clique

GENERAL FRAMEWORK

- Nogoods = illegal tuples of values for variables
- Sperner system = family of sets s.t. no set is contained in another set
- Construct Sperner system of nogoods by considering only minimized (inclusion-minimal) nogoods
- Order parameter: $\beta = \#$ minimized nogoods / #variables
- Q: How many minimized nogoods in k-graph coloring?
- A: #minimized nogoods = $|E| \cdot k$
- #minimized nogoods / #variables \propto avg. degree

THEORETICAL PREDICTION

Williams and Hogg, AIJ 1994

CSP EXAMPLE: SAT

- Given a formula in propositional logic, find a satisfying assignment (or prove that none exists)
- Example: $(a \lor b) \land (\neg a \lor \neg b \lor c)$
- Conjunctive normal form = conjunction of disjunctive clauses
- First established NP-complete problem
 - S. A. Cook. The complexity of theorem proving procedures. STOC 1971

SAT APPLICATIONS

- Electronic design automation, e.g., testing and verification
- AI: automated theorem proving, knowledge base deduction
- Software (from Athanasios): checking if program crashes

- Assign next value
- Erase unsatisfied literals, backtrack when clause becomes empty
- Unit propagation = if clause has only one variable left, assign satisfying value
- Boolean constraint propagation = iteratively apply unit propagation until there are no unit clauses

VARIABLE ORDERING FOR DPLL

- Three design principles for heuristics
- Constrainedness
 - Choose variables that are more constrained
 - Motivation: attack most difficult part of the problem first
 - Short clauses are most constraining: only take them into account
 - Several variants, e.g., most occurrences in short clauses

VARIABLE ORDERING FOR DPLL

- Satisfaction
 - Try to find variables that come closest to satisfying the problem
 - \circ Clause of length k rules out 2^{-k} of possible assignments; give weight 2^{-k} to each clause of length k
 - For each literal, calculate weighted sum of clauses that it appears in
 - Gives variable and value ordering

VARIABLE ORDERING FOR DPLL

- Simplification
 - Want to simplify the problem as much as possible
 - For each assignment we get a cascade of unit propagations
 - Test all assignments and choose the one that caused the largest cascade
 - Successful variants only probe promising variables (based on other heuristics)

DPLL AND HORN CLAUSES

- $[(a \land b \land c) \Rightarrow d]$ is equivalent to $[\neg(a \land b \land c) \lor d]$ is equivalent to $[\neg a \lor \neg b \lor \neg c \lor d]$ which is a Horn clause
- Formal def: **Horn clause** = clause that has at most one non-negated variable

DPLL AND HORN CLAUSES

- **Theorem.** If BCP applied to a set of Horn clauses does not result in contradiction then the set is satisfiable
- Proof
 - Assume BCP finished
 - Remove satisfied clauses and assigned variables from unsatisfied clauses
 - Remaining clauses have at least two literals, therefore at least one negated variable
 - How do we satisfy the remaining clauses?
 - Satisfy remaining clauses by assigning false to all unassigned variables ■

DPLL AND HORN CLAUSES

- **Corollary.** Given only Horn clauses, DPLL runs in polynomial time
- Reason: we never take a wrong path in the tree because BCP immediately finds a conflict

CONVERTING CSP TO SAT

- SAT is obviously a CSP
- A CSP can also easily be encoded as SAT
 - Clearly a polytime encoding *exists* because SAT is NP-c
- For each variable X and every $j\!\in\! \mathrm{Dom}(X)$ we have a SAT variable $Z_{X=d}$
- For example, if $Dom(X) = \{1,2,3,4\}$ then we have $Z_{X=1,} Z_{X=2,} Z_{X=3,} Z_{X=4}$

CONVERTING CSP TO SAT

- "At least one value" clause: $Z_{X=1} \lor Z_{X=2} \lor Z_{X=3} \lor Z_{X=4}$
- At most one value" clauses:

$$\begin{array}{l} (\neg Z_{X=1} \lor \neg Z_{X=2}) \land (\neg Z_{X=1} \lor \neg Z_{X=3}) \land \\ (\neg Z_{X=1} \lor \neg Z_{X=4}) \land (\neg Z_{X=2} \lor \neg Z_{X=3}) \land \\ (\neg Z_{X=2} \lor \neg Z_{X=4}) \land (\neg Z_{X=3} \lor \neg Z_{X=4}) \end{array}$$

CONVERTING CSP TO SAT

- For every constraint and every tuple that falsifies the constraint, add clause
- For example if constraint is falsified by (X=1, Y=3) add constraint $(\neg Z_{X=1} \lor \neg Z_{Y=3})$

LINEAR ENCODING

- Impose an order on the domain of each variable
- Let X with $Dom(X) = \{1, ..., d\}$
- Add d-1 SAT variables $\mathbf{Z}_{\mathbf{X}\leq\mathbf{i}}$ for all $\mathbf{i}\!\in\!\{1,\!\ldots\!,\!\mathbf{d}\!\!-\!\!1\}$
- Add clauses $[\neg Z_{X \leq i} \lor Z_{X \leq i+1}]$ for all i
- Assign X=i by $\mathbf{Z}_{\mathbf{X} \leq \mathbf{i}} = \mathbf{T}, \, \mathbf{Z}_{\mathbf{X} \leq \mathbf{i} 1} {=} \mathbf{F}$
- Advantage: BCP automatically assigns $Z_{X \leq k} = T$ for every $k > i, \, Z_{X \leq k} = F$ for every k < i-1