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Reminder 

• CSPs consist of: 
o Variables 
o Domains 
o Constraints: legal tuples of values for subsets 

of variables 
• Goal: complete and consistent assignment 
• Example: graph coloring 
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How hard are CSPs? 

• In theory, solving a general CSP is NP-c 
o Obviously in NP 
o Captures graph coloring so NP-hard 

• In practice, CSPs are often easy to solve 
• Where are the hard problems? 
• Identify order parameter to predict 

problem difficulty 
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Is this graph 4-colorable? 
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Is this graph 4-colorable? 
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Average degree 

• Order parameter for graph coloring: 
average degree = 2|E|/|V| 

• For a random graph, what is the 
probability of being colorable, as a 
function of the average degree? 

• Should be 1 at x=0 and go down to 0 
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Phase transition 
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critical value: 
avg. degree ∼8 

Cheeseman et al., IJCAI 1993 



Peak in Difficulty 
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Cheersman et al., IJCAI 1993 

critical value: 
avg. degree ∼8 



Coincidence? 

• Algorithm used: backtracking search with 
the heuristics we discussed  

• Graph coloring is most difficult around the 
critical value of the order parameter 

• In that region problems are neither 
underconstrained nor overconstrained 
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Generating hard graphs 

• We want to test our CSP solvers with 
hard problems! 

• Example: graph coloring 
• First, reduce the graph using operators 

shown on next slide 
• Second, concentrate on graphs with avg. 

degree around the critical value 
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Reduction operators 
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Examples shown for 4-coloring 

Underconstrained 

Before After 

⇒ 



Reduction operators 
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Examples shown for 4-coloring 

Subsumed 

Before After 

⇒ 



Reduction operators 
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Examples shown for 4-coloring 

Connected to (k-1)-clique 

Before After 

⇒ 



general framework 
• Nogoods = illegal tuples of values for variables 
• Sperner system = family of sets s.t. no set is contained in 

another set 
• Construct Sperner system of nogoods by considering only 

minimized (inclusion-minimal) nogoods 
• Order parameter:  

β = #minimized nogoods / #variables 
• Q: How many minimized nogoods in k-graph coloring? 
• A: #minimized nogoods = |E|⋅k 
• #minimized nogoods / #variables ∝ avg. degree 
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Theoretical prediction 
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Williams and Hogg, AIJ 1994 



CSP example: SAT 
• Given a formula in propositional logic, find 

a satisfying assignment (or prove that 
none exists) 

• Example: (a ∨ b) ∧ (¬a ∨ ¬b ∨ c) 
• Conjunctive normal form = conjunction of 

disjunctive clauses 
• First established NP-complete problem  

o S. A. Cook. The complexity of theorem proving procedures. 
STOC 1971 
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SAT applications 
• Electronic design 

automation, e.g., 
testing and 
verification 

• AI: automated 
theorem proving, 
knowledge base 
deduction 

• Software (from 
Athanasios): checking 
if program crashes 
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DPLL algorithm (1962) 
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¬a ∨ b ∨ c 
a ∨ c ∨ d 
a ∨ c ∨ ¬d 
a ∨ ¬c ∨ d 

¬b ∨ ¬c ∨ d 
¬a ∨ b ∨ ¬c 
¬a ∨ ¬b ∨ c 

a ∨ ¬c ∨ ¬d 



DPLL algorithm (1962) 
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¬a ∨ b ∨ c 
c ∨ d 
c ∨ ¬d 
¬c ∨ d 

¬b ∨ ¬c ∨ d 
¬a ∨ b ∨ ¬c 
¬a ∨ ¬b ∨ c 

a 
F 

¬c ∨ ¬d 



DPLL algorithm (1962) 
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F 
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DPLL algorithm (1962) 
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F 

c 
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DPLL algorithm (1962) 
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b 
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F 

¬a 
d 
¬d 

¬c ∨ d 
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¬a ∨ ¬c 
¬a ∨ ¬b 

¬c ∨ ¬d 



DPLL algorithm (1962) 
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¬a ∨ c 

d 

¬b ∨ d 
¬a 

¬a ∨ ¬b ∨ c 

a 
F 

b 
F 

c 
F T 

c ∨ d 
c ∨ ¬d 

¬d 



DPLL algorithm (1962) 
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¬c ∨ d 
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¬c ∨ ¬d c 
F 



DPLL algorithm (1962) 
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DPLL algorithm (1962) 
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a ∨ ¬c ∨ ¬d 
C=1 



DPLL algorithm (1962) 
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a ∨ ¬c ∨ ¬d 
c=T 
d=T 



DPLL algorithm (1962) 

• Assign next value 
• Erase unsatisfied literals, backtrack when 

clause becomes empty 
• Unit propagation = if clause has only 

one variable left, assign satisfying value 
• Boolean constraint propagation = 

iteratively apply unit propagation until 
there are no unit clauses 
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Variable ordering for DPLL 

• Three design principles for heuristics 
• Constrainedness 

o Choose variables that are more constrained 
o Motivation: attack most difficult part of the 

problem first 
o Short clauses are most constraining: only 

take them into account 
o Several variants, e.g., most occurrences in 

short clauses 
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Variable ordering for DPLL 

• Satisfaction 
o Try to find variables that come closest to 

satisfying the problem 
o Clause of length k rules out 2-k of possible 

assignments; give weight 2-k to each clause of 
length k 

o For each literal, calculate weighted sum of 
clauses that it appears in 

o Gives variable and value ordering 
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Variable ordering for DPLL 

• Simplification 
o Want to simplify the problem as much as 

possible 
o For each assignment we get a cascade of unit 

propagations 
o Test all assignments and choose the one that 

caused the largest cascade 
o Successful variants only probe promising 

variables (based on other heuristics) 
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DPLL and Horn clauses 

• [(a ∧ b ∧ c) ⇒ d] is equivalent to 
[¬(a ∧ b ∧ c) ∨ d] is equivalent to 
[¬a ∨ ¬b ∨ ¬c ∨ d] which is a Horn clause 

• Formal def: Horn clause = clause that 
has at most one non-negated variable 
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DPLL and Horn clauses 
• Theorem. If BCP applied to a set of Horn clauses does 

not result in contradiction then the set is satisfiable 
• Proof 

o Assume BCP finished 
o Remove satisfied clauses and assigned variables from 

unsatisfied clauses 
o Remaining clauses have at least two literals, therefore at least 

one negated variable 
o How do we satisfy the remaining clauses? 
o Satisfy remaining clauses by assigning false to all unassigned 

variables ∎ 
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DPLL and Horn clauses 

• Corollary. Given only Horn clauses, 
DPLL runs in polynomial time 

• Reason: we never take a wrong path in the 
tree because BCP immediately finds a 
conflict 
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Converting CSP to SAT 

• SAT is obviously a CSP 
• A CSP can also easily be encoded as SAT 

o Clearly a polytime encoding exists because 
SAT is NP-c 

• For each variable X and every j∈Dom(X) 
we have a SAT variable ZX=d 

• For example, if Dom(X)={1,2,3,4} then 
we have ZX=1, ZX=2, ZX=3, ZX=4 
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Converting CSP to SAT 

• “At least one value” clause: 
ZX=1 ∨ ZX=2 ∨ ZX=3 ∨ ZX=4 

• At most one value” clauses: 
(¬ZX=1 ∨ 

¬ZX=2) ∧ (¬ZX=1 ∨ 
¬ZX=3) ∧  

(¬ZX=1 ∨ 
¬ZX=4) ∧ (¬ZX=2 ∨ 

¬ZX=3) ∧  
(¬ZX=2 ∨ 

¬ZX=4) ∧ (¬ZX=3 ∨ 
¬ZX=4) 
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Converting CSP to SAT 

• For every constraint and every tuple that 
falsifies the constraint, add clause 

• For example if constraint is falsified by 
(X=1, Y=3) add constraint  
(¬ZX=1 ∨ 

¬ZY=3) 
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Linear encoding 

• Impose an order on the domain of each variable 
• Let X with Dom(X)={1,…,d} 
• Add d-1 SAT variables ZX≤i for all i∈{1,…,d-1} 
• Add clauses [¬ZX≤i ∨ ZX≤i+1] for all i 
• Assign X=i by ZX≤i = T, ZX≤i-1=F 
• Advantage: BCP automatically assigns ZX≤k = T 

for every k > i, ZX≤k = F for every k<i-1 
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