GRADUATE AI

LECTURE 14:
CONSTRAINT SATISFACTION 2

TEACHERS:
Martial Hebert
ARIEL PROCACCIA (THIS TIME)

REMINDER

- CSPs consist of:
- Variables
- Domains
- Constraints: legal tuples of values for subsets of variables
- Goal: complete and consistent assignment
- Example: graph coloring

How hard are CSPs?

- In theory, solving a general CSP is NP-c
- Obviously in NP
- Captures graph coloring so NP-hard
- In practice, CSPs are often easy to solve
- Where are the hard problems?
- Identify order parameter to predict problem difficulty

IS THIS GRAPH 4-COLORABLE?

IS THIS GRAPH 4-COLORABLE?

Average degree

- Order parameter for graph coloring: average degree $=2|\mathrm{E}| /|\mathrm{V}|$
- For a random graph, what is the probability of being colorable, as a function of the average degree?
- Should be 1 at $x=0$ and go down to 0

PHASE TRANSITION

PEAK IN DIFFICULTY

Cheersman et al., IJCAI 1993

Carnegie Mellon University

COINCIDENCE?

- Algorithm used: backtracking search with the heuristics we discussed
- Graph coloring is most difficult around the critical value of the order parameter
- In that region problems are neither underconstrained nor overconstrained

GENERATING HARD GRAPHS

- We want to test our CSP solvers with hard problems!
- Example: graph coloring
- First, reduce the graph using operators shown on next slide
- Second, concentrate on graphs with avg. degree around the critical value

REDUCTION OPERATORS

Underconstrained

Before
After

Examples shown for 4-coloring

REDUCTION OPERATORS

Subsumed

Before

After

Examples shown for 4-coloring

REDUCTION OPERATORS

Connected to (k-1)-clique

Before

After

Examples shown for 4-coloring

GENERAL FRAMEWORK

- Nogoods $=$ illegal tuples of values for variables
- Sperner system $=$ family of sets s.t. no set is contained in another set
- Construct Sperner system of nogoods by considering only minimized (inclusion-minimal) nogoods
- Order parameter: $\beta=\#$ minimized nogoods / \#variables
- Q: How many minimized nogoods in k-graph coloring?
- A: \#minimized nogoods $=|\mathrm{E}| \cdot \mathrm{k}$
- \#minimized nogoods / \#variables \propto avg. degree

THEORETICAL PREDICTION

Williams and Hogg, AIJ 1994

CSP EXAMPLE: SAT

- Given a formula in propositional logic, find a satisfying assignment none exists)
- Example: $(\mathrm{a} \vee \mathrm{b}) \wedge(\neg \mathrm{a} \vee \neg \mathrm{b} \vee \mathrm{c})$
- Conjunctive normal form $=$ conjunction of disjunctive clauses
- First established NP-complete problem
- S. A. Cook. The complexity of theorem proving procedures. STOC 1971

SAT APPLICATIONS

- Electronic design automation, e.g., testing and verification
- AI: automated theorem proving, knowledge base deduction
- Software (from Athanasios): checking
 if program crashes

DPLL ALGORITHM (1962)

$\neg \mathrm{a} \vee \mathrm{b} \vee \mathrm{c}$
$\mathrm{a} \vee \mathrm{c} \vee \mathrm{d}$
$\mathrm{a} \vee \mathrm{c} \vee \neg \mathrm{d}$
$\mathrm{a} \vee \neg \mathrm{c} \vee \mathrm{d}$
$\mathrm{a} \vee \neg \mathrm{c} \vee \neg \mathrm{d}$
$\neg \mathrm{b} \vee \neg \mathrm{c} \vee \mathrm{d}$
$\neg \mathrm{a} \vee \mathrm{b} \vee \neg \mathrm{c}$
$\neg \mathrm{a} \vee \neg \mathrm{b} \vee \mathrm{c}$

DPLL ALGORITHM (1962)

$\neg \mathrm{a} \vee \mathrm{b} \vee \mathrm{c}$
$\mathrm{c} \vee \mathrm{d}$
$\mathrm{c} \vee \neg \mathrm{d}$
$\neg \mathrm{c} \vee \mathrm{d}$
$\neg \mathrm{c} \vee \neg \mathrm{d}$
$\neg \mathrm{b} \vee \neg \mathrm{c} \vee \mathrm{d}$
$\neg \mathrm{a} \vee \mathrm{b} \vee \neg \mathrm{c}$
$\neg \mathrm{a} \vee \neg \mathrm{b} \vee \mathrm{c}$

DPLL ALGORITHM (1962)

$\neg \mathrm{a} \vee \mathrm{c}$
$\mathrm{c} \vee \mathrm{d}$
$\mathrm{c} \vee \neg \mathrm{d}$
$\neg \mathrm{c} \vee \mathrm{d}$
$\neg \mathrm{c} \vee \neg \mathrm{d}$
$\neg \mathrm{b} \vee \neg \mathrm{c} \vee \mathrm{d}$
$\neg \mathrm{a} \vee \neg \mathrm{c}$
$\neg \mathrm{a} \vee \neg \mathrm{b} \vee \mathrm{c}$

DPLL ALGORITHM (1962)

$\neg \mathrm{a}$
d
$\neg \mathrm{d}$
$\neg \mathrm{c} \vee \mathrm{d}$
$\neg \mathrm{c} \vee \neg \mathrm{d}$
$\neg \mathrm{b} \vee \neg \mathrm{c} \vee \mathrm{d}$
$\neg \mathrm{a} \vee \neg \mathrm{c}$
$\neg \mathrm{a} \vee \neg \mathrm{b}$

DPLL ALGORITHM (1962)

$\neg \mathrm{a}$
d
$\neg \mathrm{d}$
$\neg \mathrm{c} \vee \mathrm{d}$
$\neg \mathrm{c} \vee \neg \mathrm{d}$
$\neg \mathrm{b} \vee \neg \mathrm{c} \vee \mathrm{d}$
$\neg \mathrm{a} \vee \neg \mathrm{c}$
$\neg \mathrm{a} \vee \neg \mathrm{b}$

DPLL ALGORITHM (1962)

$\neg \mathrm{a} \vee \mathrm{c}$
$\mathrm{c} \vee \mathrm{d}$
$\mathrm{c} \vee \neg \mathrm{d}$
d
$\neg \mathrm{d}$
$\neg \mathrm{b} \vee \mathrm{d}$
$\neg \mathrm{a}$
$\neg \mathrm{a} \vee \neg \mathrm{b} \vee \mathrm{c}$

DPLL ALGORITHM (1962)

$\neg \mathrm{a} \vee \mathrm{b} \vee \mathrm{c}$
d
$\neg \mathrm{d}$
$\neg \mathrm{c} \vee \mathrm{d}$
$\neg \mathrm{c} \vee \neg \mathrm{d}$
$\neg \mathrm{c} \vee \mathrm{d}$
$\mathrm{b} \vee \neg \mathrm{c}$
$\neg \mathrm{a} \vee \mathrm{c}$

DPLL ALGORITHM (1962)

$b \vee c$
$a \vee c \vee d$
$a \vee c \vee \neg d$
$a \vee \neg c \vee d$
$a \vee \neg c \vee \neg d$
$\neg c \vee d$
$b \vee \neg c$
c

DPLL ALGORITHM (1962)

$b \vee c$
$a \vee c \vee d$
$a \vee c \vee \neg d$
$a \vee \neg c \vee d$
$a \vee \neg c \vee \neg d$
$\neg c \vee d$
$b \vee \neg c$
c

DPLL ALGORITHM (1962)

$b \vee c$
$a \vee c \vee d$
$a \vee c \vee \neg d$
$a \vee \neg c \vee d$
$a \vee \neg c \vee \neg d$
d
$b \vee \neg c$
c

DPLL ALGORITHM (1962)

- Assign next value
- Erase unsatisfied literals, backtrack when clause becomes empty
- Unit propagation $=$ if clause has only one variable left, assign satisfying value
- Boolean constraint propagation $=$ iteratively apply unit propagation until there are no unit clauses

VARIABLE ORDERING FOR DPLL

- Three design principles for heuristics
- Constrainedness
- Choose variables that are more constrained
- Motivation: attack most difficult part of the problem first
- Short clauses are most constraining: only take them into account
- Several variants, e.g., most occurrences in short clauses

VARIABLE ORDERING FOR DPLL

- Satisfaction
- Try to find variables that come closest to satisfying the problem
- Clause of length k rules out $2^{-\mathrm{k}}$ of possible assignments; give weight $2^{-\mathrm{k}}$ to each clause of length k
- For each literal, calculate weighted sum of clauses that it appears in
- Gives variable and value ordering

VARIABLE ORDERING FOR DPLL

- Simplification
- Want to simplify the problem as much as possible
- For each assignment we get a cascade of unit propagations
- Test all assignments and choose the one that caused the largest cascade
- Successful variants only probe promising variables (based on other heuristics)

DPLL AND Horn CLAUses

- $[(\mathrm{a} \wedge \mathrm{b} \wedge \mathrm{c}) \Rightarrow \mathrm{d}]$ is equivalent to $[\neg(a \wedge b \wedge c) \vee d]$ is equivalent to $[\neg \mathrm{a} \vee \neg \mathrm{b} \vee \neg \mathrm{c} \vee \mathrm{d}]$ which is a Horn clause
- Formal def: Horn clause = clause that has at most one non-negated variable

DPLL AND Horn CLAUSES

- Theorem. If BCP applied to a set of Horn clauses does not result in contradiction then the set is satisfiable
- Proof
- Assume BCP finished
- Remove satisfied clauses and assigned variables from unsatisfied clauses
- Remaining clauses have at least two literals, therefore at least one negated variable
- How do we satisfy the remaining clauses?
- Satisfy remaining clauses by assigning false to all unassigned variables ■

DPLL AND Horn clauses

- Corollary. Given only Horn clauses, DPLL runs in polynomial time
- Reason: we never take a wrong path in the tree because BCP immediately finds a conflict

CONVERTING CSP to SAT

- SAT is obviously a CSP
- A CSP can also easily be encoded as SAT
- Clearly a polytime encoding exists because SAT is NP-c
- For each variable X and every $\mathrm{j} \in \operatorname{Dom}(\mathrm{X})$ we have a SAT variable $\mathrm{Z}_{\mathrm{X}=\mathrm{d}}$
- For example, if $\operatorname{Dom}(X)=\{1,2,3,4\}$ then we have $\mathrm{Z}_{\mathrm{X}=1}, \mathrm{Z}_{\mathrm{X}=2}, \mathrm{Z}_{\mathrm{X}=3}, \mathrm{Z}_{\mathrm{X}=4}$

Converting CSP to SAT

- "At least one value" clause:

$$
\mathrm{Z}_{\mathrm{X}=1} \vee \mathrm{Z}_{\mathrm{X}=2} \vee \mathrm{Z}_{\mathrm{X}=3} \vee \mathrm{Z}_{\mathrm{X}=4}
$$

- At most one value" clauses:

$$
\begin{aligned}
& \left(\neg \mathrm{Z}_{\mathrm{X}=1} \vee \neg \mathrm{Z}_{\mathrm{X}=2}\right) \wedge\left(\neg \mathrm{Z}_{\mathrm{X}=1} \vee \neg \mathrm{Z}_{\mathrm{X}=3}\right) \wedge \\
& \left.\neg \mathrm{Z}_{\mathrm{X}=1} \vee \neg \mathrm{Z}_{\mathrm{X}=4}\right) \wedge\left(\neg \mathrm{Z}_{\mathrm{X}=2} \vee \neg \mathrm{Z}_{\mathrm{X}=3}\right) \wedge \\
& \left(\neg \mathrm{Z}_{\mathrm{X}=2} \vee \neg \mathrm{Z}_{\mathrm{X}=4}\right) \wedge\left(\neg \mathrm{Z}_{\mathrm{X}=3} \vee \neg \mathrm{Z}_{\mathrm{X}=4}\right)
\end{aligned}
$$

CONVERTING CSP to SAT

- For every constraint and every tuple that falsifies the constraint, add clause
- For example if constraint is falsified by ($\mathrm{X}=1, \mathrm{Y}=3$) add constraint $\left(\neg \mathrm{Z}_{\mathrm{X}=1} \vee \neg \mathrm{Z}_{\mathrm{Y}=3}\right)$

LINEAR ENCODING

- Impose an order on the domain of each variable
- Let X with $\operatorname{Dom}(X)=\{1, \ldots, d\}$
- Add d-1 SAT variables $\mathrm{Z}_{\mathrm{X} \leq \mathrm{i}}$ for all $\mathrm{i} \in\{1, \ldots, \mathrm{~d}-1\}$
- Add clauses $\left[\neg \mathrm{Z}_{\mathrm{X} \leq \mathrm{i}} \vee \mathrm{Z}_{\mathrm{X} \leq i+1}\right]$ for all i
- Assign $\mathrm{X}=\mathrm{i}$ by $\mathrm{Z}_{\mathrm{X} \leq \mathrm{i}}=\mathrm{T}, \mathrm{Z}_{\mathrm{X} \leq \mathrm{i}-1}=\mathrm{F}$
- Advantage: BCP automatically assigns $\mathrm{Z}_{\mathrm{X} \leq \mathrm{k}}=\mathrm{T}$ for every $\mathrm{k}>\mathrm{i}, \mathrm{Z}_{\mathrm{X} \leq \mathrm{k}}=\mathrm{F}$ for every $\mathrm{k}<\mathrm{i}-1$

