
Graduate AI
Lecture 14:
Constraint Satisfaction 2

Teachers:
Martial Hebert
Ariel Procaccia (this time)

Reminder

• CSPs consist of:
o Variables
o Domains
o Constraints: legal tuples of values for subsets

of variables
• Goal: complete and consistent assignment
• Example: graph coloring

2

How hard are CSPs?

• In theory, solving a general CSP is NP-c
o Obviously in NP
o Captures graph coloring so NP-hard

• In practice, CSPs are often easy to solve
• Where are the hard problems?
• Identify order parameter to predict

problem difficulty

3

Is this graph 4-colorable?

4

Is this graph 4-colorable?

5

Average degree

• Order parameter for graph coloring:
average degree = 2|E|/|V|

• For a random graph, what is the
probability of being colorable, as a
function of the average degree?

• Should be 1 at x=0 and go down to 0

6

Phase transition

7

critical value:
avg. degree ∼8

Cheeseman et al., IJCAI 1993

Peak in Difficulty

8

Cheersman et al., IJCAI 1993

critical value:
avg. degree ∼8

Coincidence?

• Algorithm used: backtracking search with
the heuristics we discussed

• Graph coloring is most difficult around the
critical value of the order parameter

• In that region problems are neither
underconstrained nor overconstrained

9

Generating hard graphs

• We want to test our CSP solvers with
hard problems!

• Example: graph coloring
• First, reduce the graph using operators

shown on next slide
• Second, concentrate on graphs with avg.

degree around the critical value

10

Reduction operators

11

Examples shown for 4-coloring

Underconstrained

Before After

⇒

Reduction operators

12

Examples shown for 4-coloring

Subsumed

Before After

⇒

Reduction operators

13

Examples shown for 4-coloring

Connected to (k-1)-clique

Before After

⇒

general framework
• Nogoods = illegal tuples of values for variables
• Sperner system = family of sets s.t. no set is contained in

another set
• Construct Sperner system of nogoods by considering only

minimized (inclusion-minimal) nogoods
• Order parameter:

β = #minimized nogoods / #variables
• Q: How many minimized nogoods in k-graph coloring?
• A: #minimized nogoods = |E|⋅k
• #minimized nogoods / #variables ∝ avg. degree

14

Theoretical prediction

15

Williams and Hogg, AIJ 1994

CSP example: SAT
• Given a formula in propositional logic, find

a satisfying assignment (or prove that
none exists)

• Example: (a ∨ b) ∧ (¬a ∨ ¬b ∨ c)
• Conjunctive normal form = conjunction of

disjunctive clauses
• First established NP-complete problem

o S. A. Cook. The complexity of theorem proving procedures.
STOC 1971

16

clause literal

SAT applications
• Electronic design

automation, e.g.,
testing and
verification

• AI: automated
theorem proving,
knowledge base
deduction

• Software (from
Athanasios): checking
if program crashes

17

DPLL algorithm (1962)

18

¬a ∨ b ∨ c
a ∨ c ∨ d
a ∨ c ∨ ¬d
a ∨ ¬c ∨ d

¬b ∨ ¬c ∨ d
¬a ∨ b ∨ ¬c
¬a ∨ ¬b ∨ c

a ∨ ¬c ∨ ¬d

DPLL algorithm (1962)

19

¬a ∨ b ∨ c
c ∨ d
c ∨ ¬d
¬c ∨ d

¬b ∨ ¬c ∨ d
¬a ∨ b ∨ ¬c
¬a ∨ ¬b ∨ c

a
F

¬c ∨ ¬d

DPLL algorithm (1962)

20

¬a ∨ c
c ∨ d
c ∨ ¬d
¬c ∨ d

¬b ∨ ¬c ∨ d
¬a ∨ ¬c

¬a ∨ ¬b ∨ c

a
F

b
F

¬c ∨ ¬d

DPLL algorithm (1962)

21

¬a
d
¬d

¬c ∨ d

¬b ∨ ¬c ∨ d
¬a ∨ ¬c
¬a ∨ ¬b

a
F

b
F

c
F

¬c ∨ ¬d

DPLL algorithm (1962)

22

a
F

b
F

c
F

¬a
d
¬d

¬c ∨ d

¬b ∨ ¬c ∨ d
¬a ∨ ¬c
¬a ∨ ¬b

¬c ∨ ¬d

DPLL algorithm (1962)

23

¬a ∨ c

d

¬b ∨ d
¬a

¬a ∨ ¬b ∨ c

a
F

b
F

c
F T

c ∨ d
c ∨ ¬d

¬d

DPLL algorithm (1962)

24

a
F

b
F

c
F T

T

¬a ∨ b ∨ c
d
¬d

¬c ∨ d

¬c ∨ d
b ∨ ¬c
¬a ∨ c

¬c ∨ ¬d c
F

DPLL algorithm (1962)

25

a
F

b
F

c
F T

T

c
F T

T

b
T

b ∨ c
a ∨ c ∨ d
a ∨ c ∨ ¬d
a ∨ ¬c ∨ d

¬c ∨ d
b ∨ ¬c

c

a ∨ ¬c ∨ ¬d

DPLL algorithm (1962)

26

a
F

b
F

c
F T

T

c
F T

T

b
T

b ∨ c
a ∨ c ∨ d
a ∨ c ∨ ¬d
a ∨ ¬c ∨ d

¬c ∨ d
b ∨ ¬c

c

a ∨ ¬c ∨ ¬d
C=1

DPLL algorithm (1962)

27

a
F

b
F

c
F T

T

c
F T

T

b
T

b ∨ c
a ∨ c ∨ d
a ∨ c ∨ ¬d
a ∨ ¬c ∨ d

d
b ∨ ¬c

c

a ∨ ¬c ∨ ¬d
c=T
d=T

DPLL algorithm (1962)

• Assign next value
• Erase unsatisfied literals, backtrack when

clause becomes empty
• Unit propagation = if clause has only

one variable left, assign satisfying value
• Boolean constraint propagation =

iteratively apply unit propagation until
there are no unit clauses

28

Variable ordering for DPLL

• Three design principles for heuristics
• Constrainedness

o Choose variables that are more constrained
o Motivation: attack most difficult part of the

problem first
o Short clauses are most constraining: only

take them into account
o Several variants, e.g., most occurrences in

short clauses

29

Variable ordering for DPLL

• Satisfaction
o Try to find variables that come closest to

satisfying the problem
o Clause of length k rules out 2-k of possible

assignments; give weight 2-k to each clause of
length k

o For each literal, calculate weighted sum of
clauses that it appears in

o Gives variable and value ordering

30

Variable ordering for DPLL

• Simplification
o Want to simplify the problem as much as

possible
o For each assignment we get a cascade of unit

propagations
o Test all assignments and choose the one that

caused the largest cascade
o Successful variants only probe promising

variables (based on other heuristics)

31

DPLL and Horn clauses

• [(a ∧ b ∧ c) ⇒ d] is equivalent to
[¬(a ∧ b ∧ c) ∨ d] is equivalent to
[¬a ∨ ¬b ∨ ¬c ∨ d] which is a Horn clause

• Formal def: Horn clause = clause that
has at most one non-negated variable

32

DPLL and Horn clauses
• Theorem. If BCP applied to a set of Horn clauses does

not result in contradiction then the set is satisfiable
• Proof

o Assume BCP finished
o Remove satisfied clauses and assigned variables from

unsatisfied clauses
o Remaining clauses have at least two literals, therefore at least

one negated variable
o How do we satisfy the remaining clauses?
o Satisfy remaining clauses by assigning false to all unassigned

variables ∎

33

DPLL and Horn clauses

• Corollary. Given only Horn clauses,
DPLL runs in polynomial time

• Reason: we never take a wrong path in the
tree because BCP immediately finds a
conflict

34

Converting CSP to SAT

• SAT is obviously a CSP
• A CSP can also easily be encoded as SAT

o Clearly a polytime encoding exists because
SAT is NP-c

• For each variable X and every j∈Dom(X)
we have a SAT variable ZX=d

• For example, if Dom(X)={1,2,3,4} then
we have ZX=1, ZX=2, ZX=3, ZX=4

 35

Converting CSP to SAT

• “At least one value” clause:
ZX=1 ∨ ZX=2 ∨ ZX=3 ∨ ZX=4

• At most one value” clauses:
(¬ZX=1 ∨

¬ZX=2) ∧ (¬ZX=1 ∨
¬ZX=3) ∧

(¬ZX=1 ∨
¬ZX=4) ∧ (¬ZX=2 ∨

¬ZX=3) ∧
(¬ZX=2 ∨

¬ZX=4) ∧ (¬ZX=3 ∨
¬ZX=4)

36

Converting CSP to SAT

• For every constraint and every tuple that
falsifies the constraint, add clause

• For example if constraint is falsified by
(X=1, Y=3) add constraint
(¬ZX=1 ∨

¬ZY=3)

37

Linear encoding

• Impose an order on the domain of each variable
• Let X with Dom(X)={1,…,d}
• Add d-1 SAT variables ZX≤i for all i∈{1,…,d-1}
• Add clauses [¬ZX≤i ∨ ZX≤i+1] for all i
• Assign X=i by ZX≤i = T, ZX≤i-1=F
• Advantage: BCP automatically assigns ZX≤k = T

for every k > i, ZX≤k = F for every k<i-1

38

	Slide Number 1
	Reminder
	How hard are CSPs?
	Is this graph 4-colorable?
	Is this graph 4-colorable?
	Average degree
	Phase transition
	Peak in Difficulty
	Coincidence?
	Generating hard graphs
	Reduction operators
	Reduction operators
	Reduction operators
	general framework
	Theoretical prediction
	CSP example: SAT
	SAT applications
	DPLL algorithm (1962)
	DPLL algorithm (1962)
	DPLL algorithm (1962)
	DPLL algorithm (1962)
	DPLL algorithm (1962)
	DPLL algorithm (1962)
	DPLL algorithm (1962)
	DPLL algorithm (1962)
	DPLL algorithm (1962)
	DPLL algorithm (1962)
	DPLL algorithm (1962)
	Variable ordering for DPLL
	Variable ordering for DPLL
	Variable ordering for DPLL
	DPLL and Horn clauses
	DPLL and Horn clauses
	DPLL and Horn clauses
	Converting CSP to SAT
	Converting CSP to SAT
	Converting CSP to SAT
	Linear encoding

