

GRADUATE AI

LECTURE 13:

CONSTRAINT SATISFACTION 1

TEACHERS:

MARTIAL HEBERT

ARIEL PROCACCIA (THIS TIME)

WHAT ARE CSPS?

- A constraint satisfaction problem (CSP) consists of:
 - \circ Variables $\{X_1,...,X_n\}$
 - Domains $\{D_1,...,D_n\}$
 - A set of constraints: defined on subsets of variables, give allowable tuples of values
- Consider (possibly partial) assignments of values to variables
- Solution = complete+consistent assignment

EXAMPLE: MAP COLORING

Constraint graph

SA

EXAMPLE: CRYPTARITHMETIC

TWO + TWOFOUR

OTHER EXAMPLES

- Sudoku
- Assignment problems, e.g., who teaches which class
- Scheduling problems, e.g., meetings, transportation, manufacturing
- SAT (on Monday)

BINARY CSPS

- Binary CSP = constraints involve exactly two variables
- Map coloring is binary, cryptarithmetic is not
- Any CSP can be transformed into a binary CSP; how?
- Hint: add new variable for each non-unary constraint

COMPLEXITY OF CSPS

- CSPs are NP-complete
- Clearly in NP: given an assignment, check that it is legal
- Graph coloring is a special case

CSPs vs. Search

- Informed search:
 - State is a black box
 - Heuristics are problem-specific
- In contrast, CSPs:
 - States are assignments; have structure
 - General-purpose algorithms that do not require domain-specific knowledge

SEARCH FORMULATION

- Initial state: empty assignment
- Successor: consistent assignment to unassigned variable
- Goal test: assignment is complete
- Variable assignments are commutative
 ⇒ At each node, only consider legal assignments to one of the variables

EXAMPLE: BACKTRACKING

IMPROVING EFFICIENCY

- Which variable to assign next?
- Most constrained variable: least # legal values
- Which value to assign next?
- Least constraining: largest # legal values for remaining variables
- Weird?

K-CONSISTENCY

- A CSP is **k-consistent** if for every $Y_1,...,Y_k$, any legal assignment for $Y_1,...,Y_{k-1}$ can be extended to a legal assignment for $Y_1,...,Y_k$
- Strong k-consistency = k' consistency for every $k' \le k$
- Global consistency = strong n-consistency
- Global consistency \Rightarrow backtrack-free search
- Practitioners usually enforce 2-consistency

SOLVABILITY VIA GLOBAL PROPERTIES

- We prove the following statements on the board / in the addendum
- Assume D_i=D for all i, denote |D|=d, and assume the CSP has arity r (each constraint has at most r variables). Then strong (d(r-1)+1)-consistency \Rightarrow global consistency
- Let there be a CSP with arity r. Let t be an upper bound on the number of constraints each variable appears in. Let q be a lower bound on the probability of choosing a satisfying assignment for a constraint. If $q \ge 1-1/e(r(t-1)+1)$ then there is a satisfying assignment