Markov Systems with Rewards, Markov Decision Processes

Manuela Veloso (Thanks to Reid Simmons and Andrew Moore)

Grad AI, Spring 2012

Search and Planning

Planning

- Deterministic state, preconditions, effects
- Uncertainty
 - Conditional planning, conformant planning, nondeterministic
- Probabilistic modeling of systems with uncertainty and rewards
- Modeling probabilistic systems with control, i.e., action selection
- Reinforcement learning

Markov Systems with Rewards

- Finite set of *n* states, *s_i*
- Probabilistic state matrix, P, p_{ii}
- "Goal achievement" Reward for each state, r_i
- Discount factor γ
- · Process/observation:
- Assume start state s_i
- Receive immediate reward r_i
- Move, or observe a move, randomly to a new state according to the probability transition matrix
- Future rewards (of next state) are discounted by $\boldsymbol{\gamma}$

Solving a Markov System with Rewards

- + $V^*(s_i)$ expected discounted sum of future rewards starting in state s_i
- $V^*(s_i) = r_i + \gamma [p_{i1}V^*(s_1) + p_{i2}V^*(s_2) + \dots p_{in}V^*(s_n)]$

Value Iteration to Solve a Markov System with Rewards

- *V*¹(*s_i*) expected discounted sum of future rewards starting in state *s_i* for one step.
- V²(s_i) expected discounted sum of future rewards starting in state s_i for two steps.
- ...
- V^k(s_i) expected discounted sum of future rewards starting in state s_i for k steps.
- As $k \to \infty V^k(s_i) \to V^*(s_i)$
- Stop when difference of *k* + 1 and *k* values is smaller than some *∈*.

Iteration	SUN	WIND	HAIL
0	0	0	0
1	4	0	-8
2	5.0	-1.0	-10.0
3	5.0	-1.25	-10.75
4	4.9375	-1.4375	-11.0
5	4.875	-1.515625	-11.109375
6	4.8398437	-1.5585937	-11.15625
7	4.8203125	-1.5791016	-11.178711
8	4.8103027	-1.5895996	-11.189453
9	4.805176	-1.5947876	-11.194763
10	4.802597	-1.5973969	-11.197388
11	4.8013	-1.5986977	-11.198696
12	4.8006506	-1.599349	-11.199348
13	4.8003254	-1.5996745	-11.199675
14	4.800163	-1.5998373	-11.199837
15	4.8000813	-1.5999185	-11.199919

Iteration	SUN	WIND	HAIL
0	0	0	0
1	4	0	-8
2	5.8	-1.8	-11.6
3	5.8	-2.6100001	-14.030001
4	5.4355	-3.7035	-15.488001
5	4.7794	-4.5236254	-16.636175
6	4.1150985	-5.335549	-17.521912
7	3.4507973	-6.0330653	-18.285858
8	2.8379793	-6.6757774	-18.943516
9	2.272991	-7.247492	-19.528683
50	-2.8152928	-12 345073	-24 633476
51	-2.8221645	-12.351946	-24.640347
52	-2.8283496	-12.3581295	-24.646532
86	-2.882461	-12.412242	-24.700644
87	-2.882616	-12.412397	-24.700798
88	-2.8827558	-12.412536	-24.70094

3-State Ex	kampl	e: Val	ues γ = 0.2	
Iteration	SUN	WIND	HAIL	
0	0	0	0	
1	4	0	-8	
2	4.4	+0.4	-8.8	
3	4.4	+0.44000003	-8.92	
4	4.396	-0.452	-8.936	
5	4.3944	-0.454	-8.9388	
6	4.39404	-0.45443997	-8.93928	
7	4.39396	-0.45452395	-8.939372	
8	4.393944	-0.4545412	-8.939389	
9	4.3939404	-0.45454454	-8.939393	
10	4.3939395	-0.45454526	-8.939394	
11	4.3939395	-0.45454547	-8.939394	
12	4.3939395	-0.45454547	-8.939394	

Markov Decision Processes • Finite set of states, s₁,..., s_n • Finite set of actions, *a*₁,..., *a_m* Probabilistic state,action transitions: $p_{ij}^{k} = \text{prob}\left(\text{next} = s_{j} \mid \text{current} = s_{i} \text{ and take action } a_{k}\right)$ Markov assumption: State transition function only dependent on current state, not on the "history" of how the state was reached. • Reward for each state, $r_1, ..., r_n$ Process: - Start in state s_i – Receive immediate reward r_i

- Choose action $a_k \in A$ Change to state s_j with probability p_{ij}^k .
- Discount future rewards

Solving an MDP

- Find an action to apply to each state.
- A policy is a mapping from states to actions.
- Optimal policy for every state, there is no other action that gets a higher sum of discounted future rewards.
- For every MDP there exists an optimal policy.
- Solving an MDP is finding an optimal policy.
- A specific policy converts an MDP into a plain Markov system with rewards.

Value Iteration

- $V^*(s_i)$ expected discounted future rewards, if we start from state s_i and we follow the optimal policy.
- Compute V* with value iteration:
 V^k(s_i) = maximum possible future sum of rewards starting from state s_i for k steps.
- Bellman's Equation:

$$V^{n+1}(s_{i}) = \max_{k} \{r_{i} + \gamma \sum_{j=1}^{N} p_{ij}^{k} V^{n}(s_{j})\}$$

• Dynamic programming

Policy Iteration • Start with some policy $\pi_0(s_i)$. • Such policy transforms the MDP into a plain Markov system with rewards. • Compute the values of the states according to the current policy. • Update policy: $\pi_{_{k+1}}(s_i) = \arg\max_a \{r_i + \gamma \sum_j p_{ij}^a V^{\pi_k}(s_j)\}$

- Keep computing
- Stop when $\pi_{k+1} = \pi_k$.

Nondeterministic Example
$\pi^*(s) = D$, for any s= S1, S2, S3, and S4, $\gamma = 0.9$.
V*(S2) = r(S2,D) + 0.9 (1.0 V*(S2)) V*(S2) = 100 + 0.9 V*(S2) V*(S2) = 1000.
V*(S1) = r(S1,D) + 0.9 (1.0 V*(S2)) V*(S1) = 0 + 0.9 x 1000 V*(S1) = 900.
V*(S3) = r(S3,D) + 0.9 (0.9 V*(S2) + 0.1 V*(S3)) V*(S3) = 0 + 0.9 (0.9 x 1000 + 0.1 V*(S3)) V*(S3) = 81000/91.
V*(S4) = r(S4,D) + 0.9 (0.9 V*(S2) + 0.1 V*(S4)) V*(S4) = 40 + 0.9 (0.9 x 1000 + 0.1 V*(S4)) V*(S4) = 85000/91.

Markov Models

- Plan is a *Policy*
 - Stationary: Best action is fixed
 - Non-stationary: Best action depends on time
- States can be discrete, continuous, or hybrid

	Passive	Controlled
Fully Observable	Markov Models	MDP
Hidden State	НММ	POMDP
Time Dependent	Semi-Markov	SMDP

Tradeoffs

- MDPs
 - + Tractable to solve
 - + Relatively easy to specify
 - Assumes perfect knowledge of state
- POMDPs
 - + Treats all sources of uncertainty uniformly

 - Allows for taking actions that gain information
 Difficult to specify all the conditional probabilities
 Hugely intractable to solve optimally
- SMDPs
 - + General distributions for action durations
 Few good solution algorithms

Summary

- · Markov Models with Reward
- Value iteration
- Markov Decision Process
- · Value Iteration
- Policy Iteration
- Reinforcement Learning