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Search and Planning

• Planning 
– Deterministic state, preconditions, effects

– Uncertainty
• Conditional planning, conformant planning, nondeterministic

• Probabilistic modeling of systems with 
uncertainty and rewards

• Modeling probabilistic systems with control, i.e., 
action selection

• Reinforcement learning

Example – Markov System with Reward

• States
• Rewards in states
• Probabilistic transitions between states
• Markov: transitions only depend on current state

Markov Systems with Rewards
• Finite set of n states, si

• Probabilistic state matrix, P, pij

• “Goal achievement” - Reward for each state, ri

• Discount factor - γ

• Process/observation:• Process/observation:

– Assume start state si

– Receive immediate reward ri

– Move, or observe a move, randomly to a new state 
according to the probability transition matrix

– Future rewards (of next state) are discounted by γ

Solving a Markov System with Rewards

• V*(si) - expected discounted sum of future rewards 
starting in state si

• V*(si) = ri + γ[pi1V*(s1) + pi2V*(s2) + ... pinV*(sn)]

Value Iteration to Solve a Markov System 
with Rewards

• V1(si) - expected discounted sum of future rewards 
starting in state si for one step.

• V2(si) - expected discounted sum of future rewards 
starting in state si for two steps.

• ...

Vk( ) expected discounted sum of future rewards• Vk(si) - expected discounted sum of future rewards 
starting in state si for k steps.

• As k → ∞Vk(si) → V*(si)

• Stop when difference of k + 1 and k values is smaller 
than some .
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3-State Example 3-State Example: Values γ = 0.5

3-State Example: Values γ = 0.9 3-State Example: Values γ = 0.2

Markov Decision Processes
• Finite set of states, s1,..., sn

• Finite set of actions, a1,..., am

• Probabilistic state,action transitions:

• Markov assumption: State transition function only 
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dependent on current state, not on the “history” of how 
the state was reached. 

• Reward for each state, r1,..., rn

• Process:

– Start in state si
– Receive immediate reward ri
– Choose action ak  A
– Change to state sj with probability 
– Discount future rewards
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Nondeterministic Example

Reward and discount factor to be decided.
Note the need to have a finite set of states and actions.
Note the need to have all transition probabilties.
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Solving an MDP
• Find an action to apply to each state.

• A policy is a mapping from states to actions.

• Optimal policy - for every state, there is no other action 
that gets a higher sum of discounted future rewards.

• For every MDP there exists an optimal policy.y p p y

• Solving an MDP is finding an optimal policy.

• A specific policy converts an MDP into a plain Markov 
system with rewards.

Value Iteration
• V*(si) - expected discounted future rewards, if we start 

from state si, and we follow the optimal policy.

• Compute V* with value iteration:

– Vk(si) = maximum possible future sum of rewards 
starting from state si for k steps.

• Bellman’s Equation:

• Dynamic programming
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Policy Iteration
• Start with some policy π0(si).

• Such policy transforms the MDP into a plain Markov 
system with rewards. 

• Compute the values of the states according to the 
current policy.

• Update policy:

• Keep computing 

• Stop when πk+1 = πk.
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Nondeterministic Example

Nondeterministic Example
π*(s) = D, for any s= S1, S2, S3, and S4, γ = 0.9.
-------------------------------------------------------------
V(S2) = r(S2,D) + 0.9 (1.0 V(S2))
V(S2) = 100 + 0.9 V(S2)
V(S2) = 1000.

V(S1) = r(S1,D) + 0.9 (1.0 V(S2))
V(S1) = 0 + 0 9 x 1000V(S1) = 0 + 0.9 x 1000
V(S1) = 900.

V(S3) = r(S3,D) + 0.9 (0.9 V(S2) + 0.1 V(S3))
V(S3) = 0 + 0.9 (0.9 x 1000 + 0.1 V(S3))
V(S3) = 81000/91.

V(S4) = r(S4,D) + 0.9 (0.9 V(S2) + 0.1 V(S4))
V(S4) = 40 + 0.9 (0.9 x 1000 + 0.1 V(S4))
V(S4) = 85000/91.

Markov Models
• Plan is a Policy

– Stationary: Best action is fixed

– Non-stationary: Best action depends on time

• States can be discrete, continuous, or hybrid

Passive Controlled

Fully Observable Markov Models MDP

Hidden State HMM POMDP

Time Dependent Semi-Markov SMDP
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Tradeoffs

• MDPs
+ Tractable to solve
+ Relatively easy to specify
– Assumes perfect knowledge of state

• POMDPs
+ Treats all sources of uncertainty uniformly
+ Allows for taking actions that gain information
– Difficult to specify all the conditional probabilities
– Hugely intractable to solve optimally

• SMDPs
+ General distributions for action durations
– Few good solution algorithms

Summary

• Markov Models with Reward

• Value iteration

• Markov Decision Process

• Value Iteration

• Policy Iteration

• Reinforcement Learning


