Markov Systems with Rewards, Markov Decision Processes

Manuela Veloso
(Thanks to Reid Simmons and Andrew Moore)
Grad AI, Spring 2012

Solving a Markov System with Rewards

- $V^{\star}\left(s_{i}\right)$ - expected discounted sum of future rewards starting in state s_{i}
- $V^{\star}\left(s_{i}\right)=r_{i}+\gamma\left[p_{i 1} V^{\star}\left(s_{1}\right)+p_{i 2} V^{\star}\left(s_{2}\right)+\ldots p_{i n} V^{\star}\left(s_{n}\right)\right]$

Search and Planning

- Planning
- Deterministic state, preconditions, effects
- Uncertainty
- Conditional planning, conformant planning, nondeterministic
- Probabilistic modeling of systems with uncertainty and rewards
- Modeling probabilistic systems with control, i.e., action selection
- Reinforcement learning

Markov Systems with Rewards

- Finite set of n states, s
- Probabilistic state matrix, $P, p_{i j}$
- "Goal achievement" - Reward for each state, r_{i}
- Discount factor - γ
- Process/observation:
- Assume start state s_{i}
- Receive immediate reward r_{i}
- Move, or observe a move, randomly to a new state according to the probability transition matrix
- Future rewards (of next state) are discounted by γ

Value Iteration to Solve a Markov System with Rewards

- $V^{1}\left(s_{i}\right)$ - expected discounted sum of future rewards starting in state s_{i} for one step.
- $V^{2}\left(s_{i}\right)$ - expected discounted sum of future rewards starting in state s_{i} for two steps.
-
- $V^{k}\left(s_{i}\right)$ - expected discounted sum of future rewards starting in state s_{i} for k steps.
- As $k \rightarrow \infty V^{k}\left(s_{i}\right) \rightarrow V^{*}\left(s_{i}\right)$
- Stop when difference of $k+1$ and k values is smaller than some \in.

3-State Example: Values $\gamma=0.5$

Markov Decision Processes

- Finite set of states, s_{1}, \ldots, s_{n}
- Finite set of actions, a_{1}, \ldots, a_{m}
- Probabilistic state,action transitions: $p_{i j}^{k}=\operatorname{prob}\left(\right.$ next $=s_{j} \mid$ current $=s_{i}$ and take action $\left.a_{k}\right)$
- Markov assumption: State transition function only dependent on current state, not on the "history" of how the state was reached.
- Reward for each state, r_{1}, \ldots, r_{n}
- Process:
- Start in state s_{i}
- Receive immediate reward r_{i}
- Choose action $a_{k} \in A$
- Change to state s_{j} with probability $p_{i j}^{k}$.
- Discount future rewards

3-State Example: Values $\gamma=0.2$

Iteration	SUN	WIND	HAIL
0	0	0	0
1	4	0	-8
2	4.4	-0.4	-8.8
3	4.4	-0.44000003	-8.92
4	4.396	-0.452	-8.936
5	4.3944	-0.454	-8.9388
0	4.39404	-0.45443997	-8.93928
7	4.39396	-0.45452395	-8.939372
8	4.393944	-0.4545412	-8.939389
9	4.3939404	-0.45454454	-8.939393
10	4.3939395	-0.45454526	-8.939394
11	4.3939395	-0.45454547	-8.939394
12	4.3939395	-0.45454547	-8.939394

Solving an MDP

- Find an action to apply to each state.
- A policy is a mapping from states to actions.
- Optimal policy - for every state, there is no other action that gets a higher sum of discounted future rewards.
- For every MDP there exists an optimal policy.
- Solving an MDP is finding an optimal policy.
- A specific policy converts an MDP into a plain Markov system with rewards.

Policy Iteration

- Start with some policy $\pi_{0}\left(s_{i}\right)$.
- Such policy transforms the MDP into a plain Markov system with rewards.
- Compute the values of the states according to the current policy.
- Update policy:
$\pi_{k+1}\left(s_{i}\right)=\arg \max _{a}\left\{r_{i}+\gamma \sum_{j} p_{i j}^{a} V^{\pi_{k}}\left(s_{j}\right)\right\}$
- Keep computing
- Stop when $\pi_{k+1}=\pi_{k}$.

Policy Iteration
- Start with some policy $\pi_{0}\left(s_{i}\right)$.
- Such policy transforms the MDP into a plain Markov
system with rewards.
- Compute the values of the states according to the
current policy.
- Update policy:
$\pi_{k+1}\left(s_{i}\right)=\arg \max _{a}\left\{r_{i}+\gamma \sum_{j} p_{i j}^{a} V^{\pi_{k}}\left(s_{j}\right)\right\}$
- Keep computing
- Stop when $\pi_{k+1}=\pi_{k}$.

Value Iteration

- $V^{*}\left(s_{i}\right)$ - expected discounted future rewards, if we start from state s_{i}, and we follow the optimal policy.
- Compute V^{*} with value iteration:
- $V^{k}\left(s_{i}\right)=$ maximum possible future sum of rewards starting from state s_{i} for k steps.
- Bellman's Equation:

$$
V^{n+1}\left(s_{i}\right)=\max _{k}\left\{r_{i}+\gamma \sum_{j=1}^{N} p_{i j}^{k} V^{n}\left(s_{j}\right)\right\}
$$

- Dynamic programming

Markov Models

- Plan is a Policy
- Stationary: Best action is fixed
- Non-stationary: Best action depends on time

$$
\mathrm{V} *(\mathrm{~S} 2)=\mathrm{r}(\mathrm{~S} 2, \mathrm{D})+0.9(1.0 \mathrm{~V} *(\mathrm{~S} 2))
$$

(s) = D, for any $\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 3$, an $\mathrm{S}, \gamma=0.9$.
$\mathrm{V} *(\mathrm{~S} 2)=100+0.9 \mathrm{~V} *(\mathrm{~S} 2)$
$\mathrm{V} *(\mathrm{~S} 2)=1000$.
$\mathrm{V} *(\mathrm{~S} 1)=r(\mathrm{~S} 1, \mathrm{D})+0.9(1.0 \mathrm{~V} *(\mathrm{~S} 2))$
$V *(S 1)=0+0.9 \times 1000$
$\mathrm{V} *(\mathrm{~S} 1)=900$.
$\mathrm{V} *(\mathrm{~S} 3)=\mathrm{r}(\mathrm{S} 3, \mathrm{D})+0.9(0.9 \mathrm{~V} *(\mathrm{~S} 2)+0.1 \mathrm{~V} *(\mathrm{~S} 3))$
$\mathrm{V} *(\mathrm{~S} 3)=0+0.9(0.9 \times 1000+0.1 \mathrm{~V} *(\mathrm{~S} 3))$
$V^{*}(S 3)=81000 / 91$.
$\mathrm{V} *(\mathrm{~S} 4)=\mathrm{r}(\mathrm{S} 4, \mathrm{D})+0.9(0.9 \mathrm{~V} *(\mathrm{~S} 2)+0.1 \mathrm{~V} *(\mathrm{~S} 4))$
$\mathrm{V} *(\mathrm{~S} 4)=40+0.9(0.9 \times 1000+0.1 \mathrm{~V} *(\mathrm{~S} 4))$
$\mathrm{V} *(\mathrm{~S} 4)=85000 / 91$.

Tradeoffs

- MDPs
+ Tractable to solve
+ Relatively easy to specify
- Assumes perfect knowledge of state
- POMDPs
+ Treats all sources of uncertainty uniformly
+ Allows for taking actions that gain information
- Difficult to specify all the conditional probabilities
- Hugely intractable to solve optimally
- SMDPs
+ General distributions for action durations
- Few good solution algorithms

Summary

- Markov Models with Reward
- Value iteration
- Markov Decision Process
- Value Iteration
- Policy Iteration
- Reinforcement Learning

