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A simple example: predicting electricity use

What will peak power consumption be in the Pittsburgh area
tomorrow?

Collect data of past high temperatures and peak demands
High Temperature (F) | Peak Demand (GW)

76.7 1.87
72.7 1.92
71.5 1.96
86.0 2.43
90.0 2.69

87.7 2.50
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A supervised learning pipeline

Training Data

Deployment

< Prediction = hy < 2 )
Hypothesis
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Machine Learning

Last time: Given a hypothesis class and data,
how fit parameters theta? Analytically, gradient descent,... ¢
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Last time: Given a hypothesis class and data, 
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Peak Hourly Demand (GW)

Several days of peak demand vs. high temperature in Pittsburgh over
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Overfitting

Though they may seem limited, linear hypothesis classes are very
powerful, since the input features can themselves include non-linear
features of data

| (high temperature for day i)?
W e R? = high temperature for day
1

In this case, hg(z) = 270 will be a non-linear function of “original”
data (i.e., predicted peak power is a a non-linear function of high
temperature)

Same solution method as before, gradient descent or (for squared
loss) analytical solution

31



2.8

X  Observed Data X
26f — g=»o 1

Peak Hourly Demand (GW)

20 40 60 80
High Temperature (F)

Linear regression with second degree polynomial features
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Linear regression with fourth degree polynomial features
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What Hypothesis/ Model Class Should We Choose?
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Training and validation loss

Fundamental problem: we are looking for parameters that optimize
m
nimize o (i),(i)
minimiz ;1 (ho(z'"), y'*)

but what we really care about is loss of prediction on new examples
(z',y") (also called generalization error)

Divide data into training set (used to find parameters for a fixed
hypothesis class hy), and validation set (used to choose hypothesis
class)

- (Slightly abusing notation here, we're going to wrap the “degree” of
the input features into the hypothesis class hy)
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Peak Hourly Demand (GW)
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General intuition for training and validation loss

A
— Training
— Validation

Loss

Model Complexity

We would like to choose hypothesis class that is at the “sweet spot”
of minimizing validation loss
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Model complexity and regularization

A number of different ways to control “model complexity”

An obvious one we have just seen: keep the number of features
(number of parameters) low

A less obvious method: keep the magnitude of the parameters small
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Intuition: a 30th degree polynomial that passes exactly through
many of the data points requires very large entries in 6
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We can directly prevent large entries in 6 by penalizing the
magnitude of its entries

Leads to regularized loss minimization problem

mlmmlze Z ¢ (h,g ) + A Z 92

where \ € R is a regularization parameter that weights the relative
penalties of the size of 8 and the loss
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Peak Hourly Demand (GW)
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Evaluating ML algorithms

The proper way to evaluate an ML algorithm:

1. Break all data into training/testing sets (e.g., 70%/30%)
2. Break training set into training/validation set (e.g., 70%/30% again)
3. Choose hyperparameters using validation set

4. (Optional) Once we have selected hyperparameters, retrain using all
the training set

5. Evaluate performance on the testing set
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Generalization Bounds &
Sample Complexity Bounds

. Generalization Bound

. Given a finite amount of data, if we learn a
classifier, can we have a guarantee on how well
that classifier will do on future data”? (Bound on
generalization error, e.g. accuracy on the
future)?



Generalization Bounds &
Sample Complexity Bounds

. Generalization Bound
. Given a finite amount of data, if we learn a
classifier, can we have a guarantee on how well
that classifier will do on future data”? (Bound on
generalization error, e.g. accuracy on the
future)?

« Sample Complexity
 If we require a bound on the the classifier

accuracy on future data points, can we bound
how many training samples we need to get such
a classifier?



THE PAC MODEL

* PAC = probably
approximately correct

* Introduced by Valiant [1984]

 Learner can do well on
training set but badly on new
samples

* Establish guarantees on
accuracy of learner when
generalizing from examples




THE PAC MODEL
 Input space X

e D distribution over X: unknown but fixed

 Learner receives a set S of m instances

X1, ) Xy, Independently sampled according
to D

» Concept class C of functions h: X — {4+, —}
* Assume target function ¢; € C

@ Tr&lnlﬂg examples L = {(xy Ct(xl))}



EXAMPLE: FACES

e X =R"

« Fach x € X is a vector of
colors, one per pixel

e ¢(x) = + iff x is a picture
of a face

* Training examples: Each is

a picture labeled “face” or
“not face”




EXAMPLE: RECTANGLE LEARNING

* X = R?
e C = axes- ®
aligned
rectangles

* h(x) = +iff x is O e

contained in h




THE PAC MODEL

 The error of concept h is
err(h) = xgrb[x: ce(x) # h(x)]

* Given accuracy parameter

e > 0, would like to find
concept h with err(h) <€

* Given confidence parameter
6 > 0, would like to achieve
Prlerr(h) <e]|>1-6




THE PAC MODEL

* A learning algorithm L is a function from
training examples to C such that: for every
€,0 > 0 there exists my(¢, §) such that for every

m = m,and every D, if m examples Z are drawn
from D and L(Z) = h then

Prlerr(h) 2 €] <1-46
* ( is learnable if there is a learning algorithm for

¢
mgy(€,0) is
independent of D!




THE PAC MODEL

* A learning algorithm L is a function from
training examples to C such that: for every
€,0 > 0 there exists my(¢, §) such that for every
m = mg,and every D, if m examples Z are drawn
from D and L(Z) = h then
Prlerr(h) 2 €] <1-46

Or in reverse, if
have such a L,
tells us how
much data we
need to learn
classifier that is
PAC




VC DIMENSION

* We would like to obtain a more general
result

“ Let § = {5, e %)
. \HC(S) = {(h(xy), ..., h(x)) | h € C} }
f
Ways can label the points using classifiers
in the set C




VC DIMENSION
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VC DIMENSION

* S is shattered by C if |II.(S)| = 2™
 The VC dimension of C is the cardinality
of the largest set that is shattered by C

How do we
prove upper and
lower bounds?




EXAMPLE: RECTANGLE LEARNING

* X = R?
e C = axes- ®
aligned
rectangles

* h(x) = +iff x is O e

contained in h




Proving VC Dimension

 Lower Bound
« Want to show VC dimension is at least N
 To do so it suffices to provide a set of N points that
no matter how they are labeled, we can always
create a classifier that correctly labels them
« E.g. this set of N points is shattered



Proving VC Dimension

 Lower Bound
« Want to show VC dimension is at least N
 To do so it suffices to provide a set of N points that
no matter how they are labeled, we can always
create a classifier that correctly labels them
« E.g. this set of N points is shattered
« Upper Bound
« Want to show VC dimension is less than N+1

« Show that upper and lower bound yield a unique VC
dimension



To show dvc < D+1

= We need to show that

1) There are D+1 points we can’t shatter
2) There are D+2 points we can’t shatter
3) We cannot shatter any set of D+1 points
4) We cannot shatter any set of D+2 points
5) Not sure

19
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VC DIMENSION

 Poll 3: X = real line, C = intervals, what is

VC-dim(C)?
1 5
2 o0

* Poll 4: X = real line, C = unions of
intervals, what is VC-dim(C)?
2 4

3 o'e)



SAMPLE COMPLEXITY

* Theorem: a concept class C with VC-
dim(C)= oo is not PAC learnable

* Theorem: Let C with VC-dim(C)= d. Let

L be an algorithm that produces an h € C
that is consistent with the given samples
S. Then L is a learning algorithm for C

with my = Cg( 10g5 —log )



Agnostic Learning: VC Bounds

[Schélkopf and Smola, 2002]
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Structural Risk Minimization .

Which hypothesis space should we choose?
« Bias / variance tradeoff

SRM: choose H to minimize bound on true error!

VO (H)(In j—,'f-"m +1)+In%
errortrye(h) < ETTﬂffmin(h)_}'V}l ASCD ﬂ

T

* unfortunately a somewhat loose bound...
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ML Model Class Selection:
What You Should Know

« Define training error, generalization error and model
selection problem
« Be able to apply training set partitioning to both identify
a model class expect to yield good generalization error,
and provide an estimation of that generalization error
(and explain why this procedure is reasonable)
« Empirical approach:
 partition data
« Define VC dimension and be able to
* Prove the VC dimension of a particular model class
» Use it to obtain a bound on the generalization error
* Know how many data points are needed to learn a
PAC classifier as a function of VC



Online Resources

http://www.autonlab.org/tutorials/vcdim08.pdf
http://www.cs.cmu.edu/~awm/10701/slides/PAC-learning-10-25-05.pdf

https://alliance.seas.upenn.edu/~cis520/wiki/index.php?n=Recitations.VCDim

http://web.engr.oregonstate.edu/~xfern/classes/cs534/midterm-solutions-07.pdf

http://www.cs.cmu.edu/~guestrin/Class/10701/slides/learningtheory-bigpicture.pdf




