

CMU 15-381

Lecture 6: Planning II

Teachers:
Emma Brunskill
Ariel Procaccia (this time)

PLANNING AS SEARCH

- Search from initial state to goal
- Can use standard search techniques, including heuristic search

IGNORE PRECONDITIONS

- Heuristic drops all preconditions from operations
- First attempt: # unsatisfied goals
- Complications:
 - a. Some operations achieve multiple goals
 - b. Some operations undo the effects of others
- Poll 1: To get an admissible heuristic, ignore:
 - 1. Just a
 - (2.) Just b
 - 3. Both a and b

IGNORE PRECONDITIONS

- Count min number of operations s.t. the union of their effects contains goals
- This is the Set Cover. problem: NP-hard!
- Approximation is:
 - Also hard!
 - Inadmissible!

IGNORE PRECONDITIONS

- Possible to ignore specific preconditions to derive domain-specific heuristics
- Sliding block puzzle;
- $\operatorname{On}(t, s_1) \land \operatorname{Blank}(s_2) \land \operatorname{Adjacent}(s_1, s_2) \Rightarrow$ $\operatorname{On}(t, s_2) \land \operatorname{Blank}(s_1) \land \neg \operatorname{On}(t, s_1) \land \neg \operatorname{Blank}(s_2)$
- Consider two options:
 - a. Removing Blank $(s_2) \land Adjacent(s_1, s_2)$
 - ь. Removing Blank (s_2)
- Poll 2: Match option to heuristic:
 - 1. $a \leftrightarrow \sum Manhattan, b \leftrightarrow \# misplaced tiles$
 - (2) a \leftrightarrow #misplaced tiles, b \leftrightarrow Σ Manhattan
 - 3. b↔#misplaced tiles, a is inadmissible
 - 4. $b \leftrightarrow \Sigma$ Manhattan, a is inadmissible

Example state

Goal state

PLANNING GRAPHS

- Leveled graph: vertices organized into levels, with edges only between levels
- Two types of vertices on alternating levels:
 - $_{\circ}$ Conditions
 - \circ Operations
- Two types of edges:
 - Precondition: condition to operation
 - Postcondition: operation to condition

GENERIC PLANNING GRAPH*

GRAPH CONSTRUCTION

- S_0 contains conditions that hold in initial state
- Add operation to level O_i if its preconditions appear in level S_i
- Add condition to level S_i if it is the effect of an operation in level O_{i-1} (no-op action also possible)
- Idea: S_i contains all conditions that could hold at time i; O_i contains all operations that could have their preconditions satisfied at time i
- Can optimistically estimate how many steps it takes to reach a goal

MUTUAL EXCLUSION

- Two operations or conditions are mutually exclusive (mutex) if no valid plan can contain both
- A bit more formally:
 - Two operations are mutex if their preconditions or postconditions are mutex
 - Two conditions are mutex if one is the negation of the other, or all actions that achieve them are mutex
- Even more formally...

MUTEX CASES*

- Inconsistent postconditions (two ops): one operation negates the effect of the other
- Interference (two ops): a postcondition of one operation negates precondition of the other

MUTEX CASES*

- Competing needs (two ops): a precondition of one operation is mutex with a precondition of the other
- Inconsistent support (two conditions): every possible pair of operations that achieve both conditions is mutex

Competing Needs

Inconsistent Support

DINNER DATE EXAMPLE

- Initial state: garbage \(\clean \) cleanHands \(\sigma \) quiet
- Goals: dinner ∧ present ∧ ¬garbage
- Actions:
 - Cook: cleanHands \Rightarrow dinner
 - Carry: none $\Rightarrow \neg garbage \land \neg cleanHands$
 - Dolly: none $\Rightarrow \neg \text{garbage} \land \neg \text{quiet}$
 - Wrap: quiet \Rightarrow present

DINNER DATE EXAMPLE*

DINNER DATE EXAMPLE*

Observation 1*

Conditions monotonically increase (always carried forward by no-ops)

Observation 2*

Operations monotonically increase

Observation 3*

Condition mutex relationships monotonically decrease

Observation 4

- Operation mutexes monotonically decrease
- Proof idea:
 - Inconsistent postconditions and interference are properties of the operations themselves ⇒ hold at every level
 - Competing needs: condition mutexes are monotonically decreasing
- To be formal, need to do a double induction on proposition and operation mutexes

LEVELING OFF

- As a corollary of the observations, we see that the planning graph levels off
 - Consecutive levels become identical

• Proof:

- \circ Upper bound on #operations and #conditions
- Lower bound of 0 on #mutexes

HEURISTICS FROM GRAPHS

- Level cost of goal g = level where g first appears
- To estimate the cost of all goals:
 - Max level: max level cost of any goal (clearly admissible)
 - Level sum: sum of level costs
 - Set level: level at which all goals appear without any pair being mutex
- Poll 3: Which is admissible:
 - 1. Level sum
 - 2.) Set level
 - 3. Both
 - 4. Neither

THE GRAPHPLAN ALGORITHM

- 1. Grow the planning graph until all goals are reachable and not mutex (If planning graph levels off first, fail)
- 2. Call Extract-Solution on current planning graph
- 3. If none found, add a level to the planning graph and try again

EXTRACT-SOLUTION

- Search where each state corresponds to a level and a set of unsatisfied goals
- Initial state is the last level of the planning graph, along with the goals of the planning problem
- Actions available at level S_i are to select any conflict-free subset of operations in A_{i-1} whose effects cover the goals in the state
- Resulting state has level S_{i-1} and its goals are the preconditions for selected actions
- Goal is to reach a state at level S_0

EXTRACT-SOLUTION ILLUSTRATED*

GRAPHPLAN GUARANTEES

- Observation: The size of the *t*-level planning graph and the time to create it are polynomial in *t*, #operations, #conditions
- Theorem: Graphplan returns a plan if one exists, and returns failure if one does not exists

SUMMARY

- Terminology:
 - Planning graphs
 - Set level heuristic
- Algorithms:
 - GRAPHPLAN
- Big ideas:
 - Planning is search, but admits domain-independent heuristics

