

CMU 15-381

Lecture 4:
Informed Search

Teachers:
Emma Brunskill
Ariel Procaccia (this time)

Uninformed vs. Informed

Uninformed

Can only generate successors and distinguish goals from non-goals

Informed

Strategies that know whether one non-goal is more promising than another

REMINDER: TREE SEARCH

function TREE-SEARCH(problem, strategy)
set of frontier nodes contains the start state of problem
loop

- if there are no frontier nodes then return failure
- choose a frontier node for expansion using strategy
- if the node contains a goal then return the corresponding solution
- else expand the node and add the resulting nodes to the set of frontier nodes

Uniform Cost Search

• Strategy: Expand by g(x) = work done so far

EXAMPLE: HEURISTIC

City	Aerial dist
Arad	366
Sibiu	253
Rimnicu Vilcea	193
Fagaras	176
Pitesti	100

GREEDY SEARCH

• Strategy: Expand by h(x) = heuristic evaluation of cost from x to goal

A* SEARCH

- Strategy: Expand by f(x) = h(x) + g(x)
- Poll 1: Which node is expanded fourth?

A* SEARCH

• Should we stop when we discover a goal?

• No: Only stop when we expand a goal

A* SEARCH

• Is A* optimal?

- Good path has pessimistic estimate
- Circumvent this issue by being optimistic!

ADMISSIBLE HEURISTICS

- h is admissible if for all nodes x, $h(x) \leq h^*(x),$ where h^* is the cost of the optimal path to a goal
- Example: Aerial distance in the pathfinding example
- Example: $h \equiv 0$

OPTIMALITY OF A*

• Theorem: A* tree search with an admissible heuristic returns an optimal solution

• Proof:

Assume suboptimal goal t is expanded before optimal goal t^*

OPTIMALITY OF A*

• Proof (cont.):

- There is a node x on the optimal path to t^* that has been discovered but not expanded
- f(x) = g(x) + h(x) $\leq g(x) + h^*(x)$ $= g(t^*) < g(t) = f(t)$
- \circ x should have been expanded before t!

8-PUZZLE HEURISTICS

- h_1 : #tiles in wrong position
- h_2 : sum of Manhattan distances of tiles from goal

- 2. Only h_2
- Both h_1 and h_2
- 4. Neither one

5	2	
6	1	3
7	8	4

Example state

Goal state

Heuristic for designing admissible heuristics: relax the problem!

8-PUZZLE HEURISTICS

- h_1 : #tiles in wrong position
- h_2 : sum of Manhattan distances of tiles from goal
- h dominates h' iff $\forall x, h(x) \ge h'(x)$
- Poll 3: What is the dominance relation between h_1 and h_2 ?
 - 1. h_1 dominates h_2
 - ② h_2 dominates h_1
 - 3. h_1 and h_2 are incomparable

Example state

Goal state

8-PUZZLE HEURISTICS

• The following table gives the search cost of A* with the two heuristics, averaged over random 8-puzzles, for various solution lengths

${f Length}$	$A^*(h_1)$	$A^*(h_2)$
16	1301	211
18	3056	363
20	7276	676
22	18094	1219
24	39135	1641

• Moral: Good heuristics are crucial!

A* GRAPH SEARCH

- Graph Search is the same as tree search, but never expand a node twice
- Is optimality of A* under admissible heuristics preserved? No!

CONSISTENT HEURISTICS

- $c(x,y) = \cos t$ of cheapest path between x and y
- h is consistent if for every two nodes x, y, $h(x) \le c(x, y) + h(y)$
- Assume h(t) = 0 for each goal t
- Poll 4: What is the relation between admissibility and consistency?
 - Admissible \Rightarrow consistent
 - Consistent \Rightarrow admissible
 - 3. They are equivalent
 - They are incomparable

8-PUZZLE HEURISTICS, REVISITED

- h_1 : #tiles in wrong position
- h_2 : sum of Manhattan distances of tiles from goal

- 2. Only h_2
- Both h_1 and h_2
- 4. Neither one

Example state

Goal state

OPTIMALITY OF A*, REVISITED

- Theorem: A* graph search with a consistent heuristic returns an optimal solution
- Proof:*
 - $\circ \quad \text{Assume } h(x) \le c(x, y) + h(y)$
 - Values of f(x) on a path are nondecreasing: if y is the successor of x, $f(x) = g(x) + h(x) \le g(x) + c(x,y) + h(y) = g(y) + h(y) = f(y)$
 - When A^* selects x for expansion, the optimal path to x has been found: otherwise there is a frontier node y on optimal path to x that should be expanded first
 - Nodes expanded in nondecreasing f(x)
 - ∘ First goal state that is expanded must be optimal ■

A* IS OPTIMALLY EFFICIENT

- Theorem: Any algorithm that returns the optimal solution given a consistent heuristic will expand all nodes surely expanded by A*
- But this is not the case when the heuristic is only admissible

Alg B: Conduct exhaustive search except for expanding a; then expand a only if it has the potential to sprout cheaper solution

SUMMARY

• Terminology:

- Search problems
- Algorithms: tree search, graph search, uniform cost search, greedy, A*
- Admissible and consistent heuristics

• Big ideas:

- Properties of the heuristic \Rightarrow A* optimality
- Don't be too pessimistic!

