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MULTI-ROBOT SYSTEMS?
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MULTI-ROBOT SYSTEMS?

N\
)
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So far: Ao
* How to represent world and knowledge
« How to make rational decisions
* How to learn to make rational decisions
« How to take decisions as a collective

Our rational (AI) agent was quite abstract — Physical Al agents

* Systems of multiple physical agents embedded in
environments subject to the laws of physics

e Subject to physical constraints and limitations for
motion/action, perception, communication, computation

* Partial knowledge and uncertainty are inherent

* Autonomy in acting and decision-making
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WHY “MULTI-ROBOT SYSTEMS?

& Some tasks needs 2 or more robots )
 Linear / superlinear speedups

* Parallel and spatially distributed system
* Redundancy of resources = Robustness
° A robot ecology is being developed ... Y

(e Environment inherently dynamic\
* Complex g-local interactions

* Access shared resources

* Need for (some) coordination

e Increased (state) uncertainty

* Communication issues

* Costs / Benefits ratio

O Practical problems xN Y,
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BASIC TAXONOMY

Homogeneous system: Heterogeneous system:
members are interchangeable  different members have different skills

Loosly coupled: Tightly coupled:
Being together is an advantage They need each other to successfully
but not a strict necessity complete the team task

Speedup Cooperation, Coordination
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BASIC TAXONOMY

Cooperative (Benevolent) :
Robots are working together,
forming a team

Competitive:
Robots competing for resources,
are in adversartal scenario
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BASIC TAXONOMY

Curse of
dimensionality

Not optimal

Coordination

. . - Interference

)

Centralized control Decentralized /Distributed control
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CENTRAL PROBLEM:
MULTI-ROBOT TASK ALLOCATION (MRTA)

Team Mission

l

Decomposition
in sub-tasks

l Team resources
Who does what? . and status
(and when, how)
Optimizing team
performance

Dependencies
(tasks, agents)
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MRTA: A FORMAL DEFINITION (OPT)

Given:
v A set of tasks, T
v A set of robots, R
v' R = 2R is the set of all possible robot sub-teams (e.g., (r; = 0, 1,= 0,
r3=11,=015=1)
v" A robot sub-team utility (or cost) function: U,: 2" > R U {eo} (the
utility /cost sub-team 7 incurs by handling a subset of tasks)

v' An allocation is a function A:T - R mapping each task to a subset
of robots. R is the set of all possible allocations

Find:
» The allocation A* € R" that maximizes (minimizes) a global, team-
level utility (objective) function U: RT > R U {ee}
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INTENTIONAL / EMERGENT

(] ] ] « Explicit /intentional TA:
. . . robots explicitly cooperate and
. tasks are explicitly assigned to
Batch/ the robot
atc :
Ounline ‘ Matching

* Emergent TA: tasks are
assigned as the result of local
interactions among the robots
and with the environment
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T ASKS

Elemental tasks Simple tasks Compound tasks Complex tasks
,/” \\\‘ //”~‘\\
! : 1 /e \ P
|\\ O,,l l‘ ;‘E O ," /,’ \\\
S - \\‘-’,/ '\ [} /I‘

- -

(Zlot, 2006)
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UTILITY FUNCTION

. — Q.+ — C,4 if r is capable of executing ¢
T~ otherwise

() and (' are somehow estimates that account for all
uncertainties, missing, information, ...

* Optimal allocation: Optimal based on all the available
information — Rational decision-making

* For some problems, an agent’s (sub-team’s) utility for
performing a task is independent of its utility for
performing any other task.

e In general, this is not always true

* QOur definition fails capturing dependencies
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BASIC TAXONOMY

Task Type MR R_obot Type
Single robot (SR) versus ' 5'"9’?'t05k (ST) versus
multi robot (MR) tasks multi —task (MT) robots
SR AT
7z ST

>

A TA

Allocation Type
Instantaneous assignment (IA) versus
time-extended assignment (TA)

(Gerkey and Mataric, 2006)

Assumption: Individual tasks can be assigned independently
of each other and have independent robot utilities
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WHY A TAXONOMY"?

A lot of “different MR scenarios”
A lot of “different” MRTA methods

Analysis and comparisons are difficult!

Taxonomy — Single out core features of a MRTA scenario

Allow to understand the complexity of different scenarios

Allow to compare and evaluate different approaches

A scenario is identified by a 3-vector (e.g., ST-MR-TA)
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ST-SR-IA: LINEAR ASSIGNMENT

If | R|=|T]| the problem becomes a linear assignment
and a polynomial-time solution exist!

Bl [T

The Hungarian algorithm
max U,ix, _
;31 tz: e has complexity O(| T3)
R
st lzfxrt —1 t=1,...|T] In a centralized
r=1 architecture, with each
T robot sending its | 7]
;%t =1 r=1,...[R| utilities to the
x_rt c {01} controller, O(| 71]?)

messages are needed

Assignment with hundreds of robots in < 1s
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ST-SR-IA: LINEAR ASSIGNMENT

 What if |[R| #|T] 7
 To preserve polynomial time solution, “dummy’ robots or tasks
can be included in a two-step process

« If|R| < |T): (|T]-|R|) dummy robots are added and given very
low utility values with respect to all tasks, such that that their
assignment will not affect the optimal assignment of |R| tasks to
the “real” robots

* The remaining | T]-|R| tasks (i.e., assigned to the dummy robots)
can be optimally assigned in a second round, which will likely
feature # of robots greater than the # of tasks

 Dummy tasks with very low, flat, utilities are introduced such
that their assignment will not affect the assignment of real tasks
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ST-SR-IA: ITERATED ASSIGNMENT

* Not always full /final task information is available since the
beginning of the operations

* How to deal with new / revised evidence (utility) in an
iterative scheme?

 Recompute from scratch or adapt greedily:

Broadcast of Local Eligibility (BLE, 2001), worst-case 50% opt

1. If any robot remains unassigned, find the robot-task
pair (i, j) with the highest utility. Otherwise, quit.

2. Assign robot i to task j and remove them from consid-
eration.

3. Gotostep 1.
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ST-SR-IA: ONLINE ASSIGNMENT

 Tasks are revealed one at-a-time
* If robots can be reassigned, then solving each time the
linear assignment provides the optimal solution

MURDOCH (2002)

When a new task is introduced, assign it to
the most fit robot that is currently available.

* Farthest Neighbor algorithm
* Performance bound of FNA is the best possible for any on-
line assignment algorithm (Kalyana-sundaram, Pruhs 1993).
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ST-SR-TA: GENERALIZED ASSIGNMENT
tmax i'l tiU rire Robots gets a schedule of tasks
s.t. icﬁxﬁ <T, r=1,...|R

R

Zﬁlfrtzl tzl,’T‘

Tyt € {07 1}

The “budget” constraints restricts the max number 7. of tasks
(or the total time/energy to execute them based on some cost
parameter c¢) that can be assigned to robot r

NP-hard!
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ST-SR-TA: GENERALIZED ASSIGNMENT

If dependencies / constraints are included, “more” NP-Hard

— If the utility is related to traveling distances the problem
falls in the class of mTSP, VRP problems

Multi-robot routing




MT-SR-IA: GENERALIZED ASSIGNMENT
|R| [T
fHax 721 tZU rLrt Robots can work in ||
T on multiple tasks
sit. D> cpry < T, r=1,...|R|
II?I

Zﬁlfrtzl tzl,’T‘
Trt € {071}

The “capacity” constraint explicitly restricts the max number 7.
of tasks that robot r can take, this time simultaneously
Not common in the instances from MRTA

NP-hard!
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MT-SR-TA: VRP

Robots can work in || on multiple tasks and
have a time-extended schedule of tasks:
quite uncommon in current MR literature

Vehicle routing problems with capacity constraints and
pick-up and delivery fall in this category:

« Multiple vehicles transporting multiple items (goods,
people) and picking up items along the way

* Between a pick-up and delivery location the vehicle is
dealing with MT

* Visiting multiple locations is equivalent to TA
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ST-MR-IA: SET PARTITIONING

COALITION FORMATION

* Model of the problem of dividing (partitioning) the set of
robots into non-overlapping sub-teams (coalitions) to perform
the given tasks instantaneously assigned

 This problem is mathematically equivalent to set partitioning
problem in combinatorial optimization.

N CT N N
Cover (Partition) the elements in R 1 | [x|| X RESIA
(Robots) using the elements in CT 5 |[x X
(feasible coalition-task pairs) R 3 X X
without duplicates (overlapping) 4 X X
and at the min cost / max utility 5 \ / < | x \ / \X /
NP-hard! Y VooV
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MT-MR-IA: SET COVERING
COALITION FORMATION

* Model of the problem of dividing (partitioning) the set of
robots into sub-teams (coalitions) to perform the given tasks
instantaneously assigned. Overlap is admitted to model MT

* This problem is mathematically equivalent to set covering
problem in combinatorial optimization.

CcT
Cover (Partition) the elements in R ANVANVA
(Robots) using the elements in CT ATERIEIA X
(feasible coalition-task pairs) admitting _ 2 || X x
duplicates (overlapping) and at the X x
min cost / max utility 4 x A
s LT x) X
NP-hard! VARV
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OTHER CAS!

-
N

 ST-MR-TA: Involves both coalition formation and
scheduling, and it’s mathematically equivalent to MT-SR-TA

« MT-MR-TA: Scheduling problem with multiprocessor tasks
and multipurpose machines

 Modeling of dependencies? — G. Ayorkor Korsah, Anthony
Stentz, and M. Bernardine Dias. 2013. A comprehensive

taxonomy for multi-robot task allocation. Int. J. Rob.
Res. 32, 12 (October 2013), 1495-1512.
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SOLUTION APPROACHES

 Use the reference optimization models in a centralized scheme,
solving the problems to optimality (e.g., Hungarian algorithm,
[P solvers using branch-and-bound, optimization heuristics)

e Use the reference optimization models adopting a top-down
decentralized scheme (e.g., all robots employ the same
optimization model, and rely on local information exchange to

build the model)

 Adopt different solution models avoiding to explicitly
formulate optimization problems.

 Market-based approaches are an effective and popular option

* Emergent/Swarm approaches: effective / simpler alternative
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MARKET-BASED: BASIC IDEAS

e Based on the economic model of a free market

 FEach robot seeks to maximize individual “profit”
* Individual profit helps the common good

* An auctioneer (i.e. a robot spotting a new task) offers
tasks (or roles, or resources) in an announcement phase

* Robots can negotiate and bid for tasks based on their
(estimated) utility function

* Once all bids are received or the deadline has passed, the
auction is cleared in the winner determination phase: the
auctioneer decides which items to award and to whom.

* Decisions are made locally but effects approach optimality
reserve advantages of distributed approach
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MARKET-BAS!

Robots model an economy:

— Accomplish task = Receive revenue

=D: BASIC IDEA

$ é
»$

— Consume resources =2 Incur cost

— Robot goal: maximize own profit

— Trade tasks and resources over the

market (auctions)

finds better solution

Time permitting — more centralized

Limited computational resources — more

distributed

By maximizing individual profits, team é . é
$

i

-
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MARKET-BASED: BASIC IDEAS

pu

e Utility = Revenue — Cost

« Team revenue is sum of individual revenues
 Team cost is sum of individual costs

* (Costs and revenues set up per application

o Maximizing individual profits must move team towards
globally optimal solution

 Robots that produce well at low cost receive a larger share of
the overall profit
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MARKET-BAS!

cD: IMPL]

L

M

CNTATIONS

« MURDOCH (Gerkey and Mataric, IEEE Trans. On
Robotics and Automation, 2002 / IJRR 2004)

« M+ (Botelho and Alami, ICRA 1999)
« TraderBots (Dias et al., multiple publications 1999-2006)
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SUMMARY

 Characteristics and basic taxonomy of multi-robot systems
* Taxonomy of multi-robot task allocation (MRTA) problems

* Optimization models for the different classes of MRTA
problems

 Computational complexity of the different classes
* DBasic solution approaches exploiting the optimization models

 Basic ideas about market-based methods
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