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MULTI-ROBOT SYSTEMS?
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• Systems of multiple physical agents embedded in 
environments subject to the laws of physics
• Subject to physical constraints and limitations for  
motion/action, perception, communication, computation
• Partial knowledge and uncertainty are inherent
•Autonomy in acting and decision-making

So far:
• How to represent world and knowledge
• How to make rational decisions
• How to learn to make rational decisions
• How to take decisions as a collective 

Our rational (AI) agent was quite abstract → Physical AI agents
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WHY “MULTI”-ROBOT SYSTEMS?
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• Some tasks needs 2 or more robots
• Linear / superlinear speedups
• Parallel and spatially distributed system
• Redundancy of resources ➔ Robustness
• A robot ecology is being developed …

• Environment inherently dynamic
• Complex g-local interactions 
• Access shared resources
• Need for (some) coordination
• Increased (state) uncertainty 
• Communication issues
• Costs / Benefits ratio
• Practical problems ×N
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BASIC TAXONOMY
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Homogeneous system:
members are interchangeable

Heterogeneous system:
different members have different skills

Loosely coupled:
Being together is an advantage 

but not a strict necessity
Speedup

Tightly coupled:
They need each other to successfully 

complete the team task
Cooperation, Coordination 
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BASIC TAXONOMY
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Cooperative (Benevolent) :
Robots are working together, 

forming a team

Competitive:
Robots competing for resources, 

are in adversarial scenario
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BASIC TAXONOMY
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Centralized control Decentralized/Distributed control
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CENTRAL PROBLEM:
MULTI-ROBOT TASK ALLOCATION (MRTA)
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Team Mission

Decomposition 
in sub-tasks

Team resources
and statusWho does what?

(and when, how)
Optimizing team 

performance Dependencies
(tasks, agents)
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MRTA: A FORMAL DEFINITION (OPT)
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Given:
ü A set of tasks, 𝑇
ü A set of robots, 𝑅
ü ℜ = 	2'	is the set of all possible robot sub-teams (e.g., (𝑟) = 0,	𝑟,= 0,
𝑟- = 1,𝑟/ = 0, 𝑟0 = 1)

ü A robot sub-team utility (or cost) function: 𝒰𝑟: 	23→ ℝ ∪{∞} (the 
utility/cost sub-team r incurs by handling a subset of tasks) 

ü An allocation is a function 𝐴: 𝑇 → ℜ mapping each task to a subset 
of robots. ℜ3		is the set of all possible allocations 

Find: 
Ø The allocation 𝐴∗ ∈ ℜ3	that maximizes (minimizes) a global, team-

level utility (objective) function 𝒰:ℜ3 → ℝ ∪{∞}
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INTENTIONAL / EMERGENT
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Matching

• Explicit/intentional TA:
robots explicitly cooperate and 
tasks are explicitly assigned to 
the robot

• Emergent TA: tasks are 
assigned as the result of local 
interactions among the robots 
and with the environment

Batch/
Online
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TASKS

11

(Zlot, 2006)
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UTILITY FUNCTION
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• Q and C are somehow estimates that account for all 
uncertainties, missing, information, …

• Optimal allocation: Optimal based on all the available 
information → Rational decision-making

• For some problems, an agent’s (sub-team’s) utility for 
performing a task is independent of its utility for 
performing any other task. 

• In general, this is not always true
• Our definition fails capturing dependencies
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BASIC TAXONOMY
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(Gerkey and Mataric, 2006)

Assumption: Individual tasks can be assigned independently 
of each other and have independent robot utilities



15781 Fall 2016: Lecture 18

WHY A TAXONOMY?
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• A lot of “different MR scenarios”
• A lot of “different” MRTA methods
• Analysis and comparisons are difficult!

• Taxonomy → Single out core features of a MRTA scenario
• Allow to understand the complexity of different scenarios
• Allow to compare and evaluate different approaches 
• A scenario is identified by a 3-vector (e.g., ST-MR-TA)
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ST-SR-IA: LINEAR ASSIGNMENT
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In a centralized 
architecture, with each 
robot sending its |T| 

utilities to the 
controller, O(|T|2) 

messages are needed 

If |R|=|T| the problem becomes a linear assignment
and a polynomial-time solution exist!

max

|R|P
r=1

|T |P
t=1

Urtxrt

s.t.

|R|P
r=1

xrt = 1 t = 1, . . . |T |

|T |P
t=1

xrt = 1 r = 1, . . . |R|

xrt 2 {0, 1}

The Hungarian algorithm 
has complexity O(|T|3)

Assignment with hundreds of robots in < 1s



15781 Fall 2016: Lecture 18

ST-SR-IA: LINEAR ASSIGNMENT
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• What if |R| ≠ |T| ?
• To preserve polynomial time solution, “dummy” robots or tasks 

can be included in a two-step process
• If |R| < |T|: (|T|-|R|) dummy robots are added and given very 

low utility values with respect to all tasks, such that that their 
assignment will not affect the optimal assignment of |R| tasks to 
the “real” robots

• The remaining |T|-|R| tasks (i.e., assigned to the dummy robots)  
can be optimally assigned in a second round, which will likely 
feature # of robots greater than the # of tasks

• Dummy tasks with very low, flat, utilities are introduced such 
that their assignment will not affect the assignment of real tasks
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ST-SR-IA: ITERATED ASSIGNMENT
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• Not always full/final task information is available since the 
beginning of the operations 

• How to deal with new / revised evidence (utility) in an 
iterative scheme?

• Recompute from scratch or adapt greedily:

Broadcast of Local Eligibility (BLE, 2001), worst-case 50% opt
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ST-SR-IA: ONLINE ASSIGNMENT

18

• Tasks are revealed one at-a-time 
• If robots can be reassigned, then solving each time the 

linear assignment provides the optimal solution

MURDOCH (2002) 
When a new task is introduced, assign it to 
the most fit robot that is currently available. 

• Farthest Neighbor algorithm 
• Performance bound of FNA is the best possible for any on-

line assignment algorithm (Kalyana-sundaram, Pruhs 1993). 
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ST-SR-TA: GENERALIZED ASSIGNMENT
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NP-hard!

The “budget” constraints restricts the max number Tr of tasks
(or the total time/energy to execute them based on some cost 
parameter c) that can be assigned to robot r

Robots gets a schedule of tasksmax

|R|P
r=1

|T |P
t=1

Urtxrt

s.t.

|T |P
t=1

crtxrt  Tr r = 1, . . . |R|

|R|P
r=1

xrt = 1 t = 1, . . . |T |

xrt 2 {0, 1}
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ST-SR-TA: GENERALIZED ASSIGNMENT
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If dependencies / constraints are included, “more” NP-Hard 
→ If the utility is related to traveling distances the problem 

falls in the class of mTSP, VRP problems

Multi-robot routing
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MT-SR-IA: GENERALIZED ASSIGNMENT
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NP-hard!

The “capacity” constraint explicitly restricts the max number Tr
of tasks that robot r can take, this time simultaneously
Not common in the instances from MRTA

Robots can work in || 
on multiple tasks

max

|R|P
r=1

|T |P
t=1

Urtxrt

s.t.

|T |P
t=1

crtxrt  Tr r = 1, . . . |R|

|R|P
r=1

xrt = 1 t = 1, . . . |T |

xrt 2 {0, 1}



15781 Fall 2016: Lecture 18

MT-SR-TA: VRP
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NP-hard!

Vehicle routing problems with capacity constraints and 
pick-up and delivery fall in this category:
• Multiple vehicles transporting multiple items (goods, 

people) and picking up items along the way
• Between a pick-up and delivery location the vehicle is 

dealing with MT
• Visiting multiple locations is equivalent to TA

Robots can work in || on multiple tasks and
have a time-extended schedule of tasks: 

quite uncommon in current MR literature
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ST-MR-IA: SET PARTITIONING
COALITION FORMATION
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NP-hard!

• Model of the problem of dividing (partitioning) the set of 
robots into non-overlapping sub-teams (coalitions) to perform 
the given tasks instantaneously assigned 

• This problem is mathematically equivalent to set partitioning 
problem in combinatorial optimization. 
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Cover (Partition) the elements in R
(Robots) using the elements in CT
(feasible coalition-task pairs) 
without duplicates (overlapping) 
and at the min cost / max utility
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MT-MR-IA: SET COVERING
COALITION FORMATION
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NP-hard!

• Model of the problem of dividing (partitioning) the set of 
robots into sub-teams (coalitions) to perform the given tasks 
instantaneously assigned. Overlap is admitted to model MT

• This problem is mathematically equivalent to set covering 
problem in combinatorial optimization. 

CT
Cover (Partition) the elements in R
(Robots) using the elements in CT
(feasible coalition-task pairs) admitting  
duplicates (overlapping) and at the 
min cost / max utility
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OTHER CASES
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• ST-MR-TA: Involves both coalition formation and 
scheduling, and it’s mathematically equivalent to MT-SR-TA 

• MT-MR-TA: Scheduling problem with multiprocessor tasks 
and multipurpose machines 

• Modeling of dependencies? → G. Ayorkor Korsah, Anthony 
Stentz, and M. Bernardine Dias. 2013. A comprehensive 
taxonomy for multi-robot task allocation. Int. J. Rob. 
Res. 32, 12 (October 2013), 1495-1512.
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SOLUTION APPROACHES
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• Use the reference optimization models in a centralized scheme, 
solving the problems to optimality (e.g., Hungarian algorithm, 
IP solvers using branch-and-bound, optimization heuristics)

• Use the reference optimization models adopting a top-down 
decentralized scheme (e.g., all robots employ the same 
optimization model,  and rely on local information exchange to 
build the model)

• Adopt different solution models avoiding to explicitly 
formulate optimization problems. 

• Market-based approaches are an effective and popular option
• Emergent/Swarm approaches: effective / simpler alternative
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MARKET-BASED: BASIC IDEAS
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• Based on the economic model of a free market
• Each robot seeks to maximize individual “profit”
• Individual profit helps the common good
• An auctioneer (i.e. a robot spotting a new task) offers 

tasks (or roles, or resources) in an announcement phase
• Robots can negotiate and bid for tasks based on their 

(estimated) utility function
• Once all bids are received or the deadline has passed, the 

auction is cleared in the winner determination phase: the 
auctioneer decides which items to award and to whom. 

• Decisions are made locally but effects approach optimality
o Preserve advantages of distributed approach
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MARKET-BASED: BASIC IDEAS
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• Robots model an economy:
– Accomplish task à Receive revenue
– Consume resources à Incur cost
– Robot goal: maximize own profit
– Trade tasks and resources over the 

market (auctions)
• By maximizing individual profits, team 

finds better solution
• Time permitting → more centralized
• Limited computational resources → more 

distributed

$

$

$

$
$
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MARKET-BASED: BASIC IDEAS
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• Utility = Revenue – Cost
• Team revenue is sum of individual revenues
• Team cost is sum of individual costs
• Costs and revenues set up per application

o Maximizing individual profits must move team towards 
globally optimal solution

• Robots that produce well at low cost receive a larger share of 
the overall profit
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MARKET-BASED: IMPLEMENTATIONS
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• MURDOCH (Gerkey and Mataric ́, IEEE Trans. On 
Robotics and Automation, 2002 / IJRR 2004) 

• M+ (Botelho and Alami, ICRA 1999)
• TraderBots (Dias et al., multiple publications 1999-2006) 
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SUMMARY
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• Characteristics and basic taxonomy of multi-robot systems 
• Taxonomy of multi-robot task allocation (MRTA) problems
• Optimization models for the different classes of MRTA 

problems
• Computational complexity of the different classes
• Basic solution approaches exploiting the optimization models
• Basic ideas about market-based methods


