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So long certainty… 

•  Until now, result of taking an action in a 
state was deterministic 

Agent 

Sensors 

Actuators 

Environment	  
Percepts 

Actions 
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Expectation 

•  The expected value of a function of a random 
variable is the average, weighted by the probability 
distribution over outcomes 

•  Example: expected time if take the bus 
•  Time:                  5 min   +     30 min  
•  Probability:        0.7       +     0.3 

12.5	  min	  
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Where Do Probabilities 
Come from? 

•  Models 
•  Data 
•  For now assume we are 

given the probabilities for 
any chance node 

max	  

chance	  



Reasoning Under 
Uncertainty 

Decision theory 
Markov 
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(Stochastically) Change the World 

•  Like planning/search, actions impact world 
•  But exact impact is stochastic: probability 

distribution over next states 

Agent 

Sensors 

Actuators 

Environment	  
Percepts 

Actions 
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Example: Grid World 
§  A	  maze-‐like	  problem	  

§  The	  agent	  lives	  in	  a	  grid	  
§  Walls	  block	  the	  agent’s	  path	  

§  The	  agent	  receives	  rewards	  each	  #me	  step	  
§  Small	  “living”	  reward	  each	  step	  (can	  be	  

nega#ve)	  
§  Big	  rewards	  come	  at	  the	  end	  (good	  or	  bad)	  

§  Goal:	  maximize	  sum	  of	  rewards	  
§  Noisy	  movement:	  ac#ons	  do	  not	  always	  go	  as	  

planned	  
§  80%	  of	  the	  #me,	  ac#on	  North	  takes	  the	  agent	  

North	  (if	  there	  is	  no	  wall	  there)	  
§  10%	  of	  the	  #me,	  North	  takes	  the	  agent	  West;	  

10%	  East	  
§  If	  there	  is	  a	  wall	  in	  the	  direc#on	  the	  agent	  

would	  have	  gone,	  agent	  stays	  put	  
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Grid World Actions 
Determinis#c	  Grid	  World	   Stochas#c	  Grid	  World	  
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Markov Decision Processes 

•  Set of states s ∈ S 
•  Set of actions a ∈ A 
•  Transition func. T(s, a, s’) 

•  Probability that a from s leads to s’, i.e., P(s’| s, a) 
•  Reward func. R(s, a, s’) / R(s) /  R(s,a) 
•  Start state or states (could be all S) 
•  Maybe a terminal state 
•  Discount factor 
•  MDPs are non-deterministic 

search problems 
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Markov Decision Processes 



Markov Property 

•  Called Markov decision process because 
the outcome of an action depends only on 
the current state 

•  p(st+1|s1,a1,s2,a2,…st,at)=p(st+1|st,at) 



Policies 

•  In deterministic single-agent search problems, we wanted 
an optimal plan, or sequence of actions, from start to a goal 

•  In MDPs instead of plans, we have a policies  
•  A policy π*: S → A 

o  Specifies what action to take in each state 
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How Many Policies? 

•  How many non-terminal 
states? 

•  How many actions? 
•  How many deterministic 

policies over non-terminal 
states? 



Optimal Policies 

•  Optimal plan had minimal cost to reach goal 
•  Utility or value of a policy π starting in state 

s is the expected sum of future rewards will 
receive by following π starting in state s  

•  Optimal policy has maximal expected sum 
of rewards from following it 



Optimal Policies 

R(s)	  =	  -‐2.0	  R(s)	  =	  -‐0.4	  

R(s)	  =	  
-‐0.03	  

R(s)	  =	  
-‐0.01	  
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Example:	  Racing	  •  A	  robot	  car	  wants	  to	  travel	  far,	  quickly	  
•  Three	  states:	  Cool,	  Warm,	  Overheated	  
•  Two	  ac#ons:	  Slow,	  Fast	  
•  Going	  faster	  gets	  double	  reward	  

Cool	  

Warm	  

Overheated	  

Fast	  

Fast	  

Slow	  

Slow	  

0.5	  	  

0.5	  	  

0.5	  	  

0.5	  	  

1.0	  	  

1.0	  	  

+1	  	  

+1	  	  

+1	  	  

+2	  	  

+2	  	  

-‐10	  

Slide adapted from Klein and Abbeel 



Racing Search Tree 
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Utilities of Sequences 



Utilities of Sequences 

•  What preferences should an agent have over 
reward sequences? 

•  More or less? 

•  Now or later? 
[1,	  2,	  2]	   [2,	  3,	  4]	  	  or	  

[0,	  0,	  1]	   [1,	  0,	  0]	  	  or	  
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Stationary Preferences 

•  Theorem: if we assume stationary 
preferences: 

 
•  Then: there are only two ways to define 

utilities over sequences of rewards 

o  Additive utility: 

o  Discounted utility: 
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What are Discounts? 

•  It’s reasonable to prefer rewards now to rewards 
later 

•  Decay rewards exponentially 

Worth	  
Now	  

Worth	  Next	  
Step	  

Worth	  In	  Two	  
Steps	  
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Discounting 

•  Given: 

o  Actions: East, West 
o  Terminal states: a and e (end when reach one or the other) 
o  Transitions: deterministic 
o  Reward for reaching a is 10 (regardless of initial state & action, e.g. r(s,action,a) = 10), reward 

for reaching e is 1, and the reward for reaching all other states is 0 
•  Quiz 1: For γ = 1, what is the optimal policy? 

•  Quiz 2: For γ = 0.1, what is the optimal policy for states b, c and d? 

•  Quiz 3: For which γ are West and East equally good when in state d?  
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Quiz: Discounting 

•  Given: 

o  Actions: East, West 
o  Terminal states: a and e (endwhen reach one or the other) 
o  Transitions: deterministic 
o  Reward for reaching a is 10 (regardless of initial state a& action, e.g. r(s,action,a) = 10), reward 

for reaching e is 1, and the reward for reaching all other states is 0 
•  Quiz 1: For γ = 1, what is the optimal policy? 

o  In all states, Go West (towards a) 
•  Quiz 2: For γ = 0.1, what is the optimal policy? 

o  b=W, c=W, d=E 
•  Quiz 3: For which γ are West and East equally good when in state d?  Gamma 

= sqrt (1/10) 
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Infinite Utilities?! 
§  Problem: What if the game lasts forever?  Do we get infinite 

rewards? 
§  Solutions: 

§  Finite horizon: (similar to depth-limited search) 
§  Terminate episodes after a fixed T steps (e.g. life) 
§  Gives nonstationary policies (π depends on time left) 

§  Discounting: use 0 < γ < 1 

§  Smaller γ means smaller “horizon” – shorter term focus 
§  Absorbing state: guarantee that for every policy, a terminal 

state will eventually be reached (like “overheated” for racing) 
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Recap: Defining MDPs 

•  Markov decision processes: 
o  Set of states S 
o  Start state s0 
o  Set of actions A 
o  Transitions P(s’|s,a) (or T(s,a,s’)) 
o  Rewards R(s,a,s’) (and discount γ) 

•  MDP quantities so far: 
o  Policy = Choice* of action for each state 
o  Utility/Value = sum of (discounted) rewards 
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Value of a Policy in Each State 

•  Expected immediate reward for taking action 
prescribed by policy π for that state 

•  And expected future reward get after taking 
that action from that state and following π  

 
•  Future reward depends on horizon (how 

many more steps get to act). For now 
assume infinite 

V π (s) = p(s ' | s,π (s)) R(s,π (s), s ')+γV π (s ')!" #$s '∈S∑

28 



Q: State-Action Value 

•  Expected immediate reward for taking action 
•  And expected future reward get after taking 

that action from that state and following π  

 Q
π (s,a) = p(s ' | s,a) R(s,a, s ')+γV π (s ')!" #$s '∈S∑



Optimal Value V* and π*   

•  Optimal value: Highest possible value for each s 
•  Satisfies the Bellman Equation 

•  Optimal policy 

•  Want to find these optimal values! 

V *(si ) =maxa p(sj | si ,a) R(si ,a, s ')+γV *(sj )!" #$sj∈S
∑( )

π *(si ) = argmax
a

Q(si,a)

= argmax
a

p(sj | si ,a) R(si ,a, s ')+γV *(sj )!" #$sj∈S
∑( )



Value Iteration 

•  Bellman equation inspires an update rule 

•  Form of dynamic programming 

V *(si ) =maxa p(sj | si ,a) R(s,a, s ')+γV *(sj )!" #$sj∈S
∑( )

Vk (si ) =maxa p(sj | si ,a) R(s,a, s ')+γVk−1(sj )"# $%sj∈S
∑( )

31 



Also Called a Bellman 
Backup 

•  In shorthand, for performing the above 
computation for all states,  

Vk (si ) =maxa p(sj | si ,a) R(s,a, s ')+γVk−1(sj )"# $%sj∈S
∑( )

Vk = BVk−1

32 



Value Iteration Algorithm 

1.  Initialize V0(si)=0 for all states si, Set K=1 
2.  While k < desired horizon or (if infinite 

horizon) values have converged 
o  For all s,  

 
3.  Extract Policy 

Vk (si ) =maxa p(sj | si ,a) R(s,a, s ')+γVk−1(sj )"# $%sj∈S
∑( )

π k (si ) = argmax
a

p(sj | si ,a) R(s,a, s ')+γVk−1(sj )"# $%sj∈S
∑( )



Calculate	  V2(warmCar)	  
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For	  General	  Prac#ce,	  check	  can	  calculate	  
V2(warmCar)	  

	  	  0	  	  	  	  	  	  	  	  	  0	  	  	  	  	  	  	  	  0	  

	  	  2	  	  	  	  	  	  	  	  	  1	  	  	  	  	  	  	  	  0	  

Slide adapted from Klein and Abbeel 

Vk (si ) =maxa p(sj | si ,a) R(s,a, s ')+γVk−1(sj )"# $%sj∈S
∑( )
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Value	  Itera#on	  	  

	  	  0	  	  	  	  	  	  	  	  	  0	  	  	  	  	  	  	  	  0	  

	  	  2	  	  	  	  	  	  	  	  	  1	  	  	  	  	  	  	  	  0	  

V2(	  	  	  	  	  	  	  	  	  	  	  ):	  	  	  	  	  2.5	  

Slide adapted from Klein and Abbeel 

Vk (si ) =maxa p(sj | si ,a) R(s,a, s ')+γVk−1(sj )"# $%sj∈S
∑( )
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Computational Cost for 1 
Update of V(s) for all s in 
Value Iteration? 

o  For all s,  
 Vk (si ) =maxa p(sj | si ,a) R(s,a, s ')+γVk−1(sj )"# $%sj∈S

∑( )
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Computational Cost Per 
Iteration? 

AS2 

o  For all s,  
 Vk (si ) =maxa p(sj | si ,a) R(s,a, s ')+γVk−1(sj )"# $%sj∈S

∑( )

38 



Will Value Iteration Converge 
for Infinite Horizon Problems? 

39 



Contraction Operator 

•  Let O be an operator 
•  If |OV – OV’| <= |V-V|’ 
•  Then O is a contraction operator 

40 



Will Value Iteration Converge? 

•  Yes, if discount factor γ < 1 or end up in a 
terminal state with probability 1 

•  Bellman equation is a contraction if 
discount factor, γ < 1 

•  If apply it to two different value functions, 
distance between value functions shrinks 
after apply Bellman equation to each 

41 



Bellman Operator is a 
Contraction (γ<1) 

42 

BV −BV ' = max
a

R(s,a)+γ p(sj | si ,a)V (sj )sj∈S
∑$

%&
'
()
−max

a '
R(s,a ')−γ p(sj | si ,a ')V '(sj )sj∈S

∑$
%&

'
()

≤maxa R(s,a)+γ p(sj | si ,a)V (sj )− R(s,a)+γ p(sj | si ,a)V '(sj )sj∈S
∑sj∈S

∑%
&'

(
)*

≤ γmax
a,si

p(sj | si,a)V (sj )−V '(sj )sj∈S
∑

≤ γmax
a,si

p(sj | si,a) V −V 'sj∈S
∑

= γ V −V '

≤ γmax
a

p(sj | si ,a)V (sj )− p(sj | si ,a)V '(sj )sj∈S
∑sj∈S

∑%&'
(
)*

= γmax
a

p(sj | si ,a)(V (sj )−V '(sj ))sj∈S
∑$%&

'
()

|| V-V’|| = Infinity norm (find max difference over all states, e.g. max(s) |V(s) – V’(s) | 



Properties of Contraction 

•  Only has 1 fixed point (the point reach if apply a 
contraction operator many times) 
o  If had two, then would not get closer when apply 

contraction function, violating definition of 
contraction 

•  When apply contraction function to any argument, 
value must get closer to fixed point 
o  Fixed point doesn’t move 
o  Repeated function applications yield fixed point 
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VI Converges 

•  Value iteration converges to unique 
solution which is optimal value function 

•  Proof: limk→∞Vk =V *

Vk+1 −V * ∞
= BVk −V * ∞

≤ γ Vk −V * ∞
≤ ...

≤ γ k+1 V0 −V * ∞
→ 0

44 



Discuss and Report Back: Does 
Initialization Impact Final 
Value? Value Iteration Algorithm 

1.  Init V0(si) for all states si 

2.  k=1 
3.  While k < desired horizon 

or (if infinite horizon) 
values have converged 

o  For all s,  
 Vk (si ) =maxa p(sj | si ,a) R(s,a, s ')+γVk−1(sj )"# $%sj∈S

∑( )
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