
CMU
MDPs
15-381/781

Emma Brunskill (THIS TIME)
Ariel Procaccia

•  DeepMind

2

So long certainty…

•  Until now, result of taking an action in a
state was deterministic

Agent

Sensors

Actuators

Environment	
Percepts

Actions

Slide adapted from Klein and Abbeel

Reasoning Under
Uncertainty

Multi-armed
bandits

Reinforcement
Learning

Decision theory Markov Decision
Processes

Ac#ons	 Don’t	
Change	 State	 of	

the	 World	

Learn	 model	
of	 outcomes	

	
	

Given	 model	
of	 stochas#c	
outcomes	

Ac#ons	 Change	
State	 of	 the	

World	

Expectation

•  The expected value of a function of a random
variable is the average, weighted by the probability
distribution over outcomes

•  Example: expected time if take the bus
•  Time: 5 min + 30 min
•  Probability: 0.7 + 0.3

12.5	 min	

Slide adapted from Klein and Abbeel

Where Do Probabilities
Come from?

•  Models
•  Data
•  For now assume we are

given the probabilities for
any chance node

max	

chance	

Reasoning Under
Uncertainty

Decision theory
Markov

Decision
Processes

Learn	 model	
of	 outcomes	

	
Given	 model	
of	 stochas#c	
outcomes	

Ac#ons	 Don’t	
Change	 State	 of	

the	 World	

Ac#ons	 Change	
State	 of	 the	

World	

(Stochastically) Change the World

•  Like planning/search, actions impact world
•  But exact impact is stochastic: probability

distribution over next states

Agent

Sensors

Actuators

Environment	
Percepts

Actions

Slide adapted from Klein and Abbeel

Example: Grid World
§  A	 maze-‐like	 problem	

§  The	 agent	 lives	 in	 a	 grid	
§  Walls	 block	 the	 agent’s	 path	

§  The	 agent	 receives	 rewards	 each	 #me	 step	
§  Small	 “living”	 reward	 each	 step	 (can	 be	

nega#ve)	
§  Big	 rewards	 come	 at	 the	 end	 (good	 or	 bad)	

§  Goal:	 maximize	 sum	 of	 rewards	
§  Noisy	 movement:	 ac#ons	 do	 not	 always	 go	 as	

planned	
§  80%	 of	 the	 #me,	 ac#on	 North	 takes	 the	 agent	

North	 (if	 there	 is	 no	 wall	 there)	
§  10%	 of	 the	 #me,	 North	 takes	 the	 agent	 West;	

10%	 East	
§  If	 there	 is	 a	 wall	 in	 the	 direc#on	 the	 agent	

would	 have	 gone,	 agent	 stays	 put	

Slide adapted from Klein and Abbeel

Grid World Actions
Determinis#c	 Grid	 World	 Stochas#c	 Grid	 World	

Slide adapted from Klein and Abbeel

Markov Decision Processes

•  Set of states s ∈ S
•  Set of actions a ∈ A
•  Transition func. T(s, a, s’)

•  Probability that a from s leads to s’, i.e., P(s’| s, a)
•  Reward func. R(s, a, s’) / R(s) / R(s,a)
•  Start state or states (could be all S)
•  Maybe a terminal state
•  Discount factor
•  MDPs are non-deterministic

search problems

Slide adapted from Klein and Abbeel

Markov Decision Processes

Markov Property

•  Called Markov decision process because
the outcome of an action depends only on
the current state

•  p(st+1|s1,a1,s2,a2,…st,at)=p(st+1|st,at)

Policies

•  In deterministic single-agent search problems, we wanted
an optimal plan, or sequence of actions, from start to a goal

•  In MDPs instead of plans, we have a policies
•  A policy π*: S → A

o  Specifies what action to take in each state

Slide adapted from Klein and Abbeel

How Many Policies?

•  How many non-terminal
states?

•  How many actions?
•  How many deterministic

policies over non-terminal
states?

Optimal Policies

•  Optimal plan had minimal cost to reach goal
•  Utility or value of a policy π starting in state

s is the expected sum of future rewards will
receive by following π starting in state s

•  Optimal policy has maximal expected sum
of rewards from following it

Optimal Policies

R(s)	 =	 -‐2.0	 R(s)	 =	 -‐0.4	

R(s)	 =	
-‐0.03	

R(s)	 =	
-‐0.01	

Slide adapted from Klein and Abbeel

Example:	 Racing	 •  A	 robot	 car	 wants	 to	 travel	 far,	 quickly	
•  Three	 states:	 Cool,	 Warm,	 Overheated	
•  Two	 ac#ons:	 Slow,	 Fast	
•  Going	 faster	 gets	 double	 reward	

Cool	

Warm	

Overheated	

Fast	

Fast	

Slow	

Slow	

0.5	 	

0.5	 	

0.5	 	

0.5	 	

1.0	 	

1.0	 	

+1	 	

+1	 	

+1	 	

+2	 	

+2	 	

-‐10	

Slide adapted from Klein and Abbeel

Racing Search Tree

Slide adapted from Klein and Abbeel

Slide adapted from Klein and Abbeel

Utilities of Sequences

Utilities of Sequences

•  What preferences should an agent have over
reward sequences?

•  More or less?

•  Now or later?
[1,	 2,	 2]	 [2,	 3,	 4]	 	 or	

[0,	 0,	 1]	 [1,	 0,	 0]	 	 or	

Slide adapted from Klein and Abbeel

Stationary Preferences

•  Theorem: if we assume stationary
preferences:

•  Then: there are only two ways to define

utilities over sequences of rewards

o  Additive utility:

o  Discounted utility:

Slide adapted from Klein and Abbeel

What are Discounts?

•  It’s reasonable to prefer rewards now to rewards
later

•  Decay rewards exponentially

Worth	
Now	

Worth	 Next	
Step	

Worth	 In	 Two	
Steps	

Slide adapted from Klein and Abbeel

Discounting

•  Given:

o  Actions: East, West
o  Terminal states: a and e (end when reach one or the other)
o  Transitions: deterministic
o  Reward for reaching a is 10 (regardless of initial state & action, e.g. r(s,action,a) = 10), reward

for reaching e is 1, and the reward for reaching all other states is 0
•  Quiz 1: For γ = 1, what is the optimal policy?

•  Quiz 2: For γ = 0.1, what is the optimal policy for states b, c and d?

•  Quiz 3: For which γ are West and East equally good when in state d?

Slide adapted from Klein and Abbeel

Quiz: Discounting

•  Given:

o  Actions: East, West
o  Terminal states: a and e (endwhen reach one or the other)
o  Transitions: deterministic
o  Reward for reaching a is 10 (regardless of initial state a& action, e.g. r(s,action,a) = 10), reward

for reaching e is 1, and the reward for reaching all other states is 0
•  Quiz 1: For γ = 1, what is the optimal policy?

o  In all states, Go West (towards a)
•  Quiz 2: For γ = 0.1, what is the optimal policy?

o  b=W, c=W, d=E
•  Quiz 3: For which γ are West and East equally good when in state d? Gamma

= sqrt (1/10)

Slide adapted from Klein and Abbeel

Infinite Utilities?!
§  Problem: What if the game lasts forever? Do we get infinite

rewards?
§  Solutions:

§  Finite horizon: (similar to depth-limited search)
§  Terminate episodes after a fixed T steps (e.g. life)
§  Gives nonstationary policies (π depends on time left)

§  Discounting: use 0 < γ < 1

§  Smaller γ means smaller “horizon” – shorter term focus
§  Absorbing state: guarantee that for every policy, a terminal

state will eventually be reached (like “overheated” for racing)

Slide adapted from Klein and Abbeel

Recap: Defining MDPs

•  Markov decision processes:
o  Set of states S
o  Start state s0
o  Set of actions A
o  Transitions P(s’|s,a) (or T(s,a,s’))
o  Rewards R(s,a,s’) (and discount γ)

•  MDP quantities so far:
o  Policy = Choice* of action for each state
o  Utility/Value = sum of (discounted) rewards

Slide adapted from Klein and Abbeel

Value of a Policy in Each State

•  Expected immediate reward for taking action
prescribed by policy π for that state

•  And expected future reward get after taking
that action from that state and following π

•  Future reward depends on horizon (how

many more steps get to act). For now
assume infinite

V π (s) = p(s ' | s,π (s)) R(s,π (s), s ')+γV π (s ')!" #$s '∈S∑

28

Q: State-Action Value

•  Expected immediate reward for taking action
•  And expected future reward get after taking

that action from that state and following π

 Q
π (s,a) = p(s ' | s,a) R(s,a, s ')+γV π (s ')!" #$s '∈S∑

Optimal Value V* and π*

•  Optimal value: Highest possible value for each s
•  Satisfies the Bellman Equation

•  Optimal policy

•  Want to find these optimal values!

V *(si) =maxa p(sj | si ,a) R(si ,a, s ')+γV *(sj)!" #$sj∈S
∑()

π *(si) = argmax
a

Q(si,a)

= argmax
a

p(sj | si ,a) R(si ,a, s ')+γV *(sj)!" #$sj∈S
∑()

Value Iteration

•  Bellman equation inspires an update rule

•  Form of dynamic programming

V *(si) =maxa p(sj | si ,a) R(s,a, s ')+γV *(sj)!" #$sj∈S
∑()

Vk (si) =maxa p(sj | si ,a) R(s,a, s ')+γVk−1(sj)"# $%sj∈S
∑()

31

Also Called a Bellman
Backup

•  In shorthand, for performing the above
computation for all states,

Vk (si) =maxa p(sj | si ,a) R(s,a, s ')+γVk−1(sj)"# $%sj∈S
∑()

Vk = BVk−1

32

Value Iteration Algorithm

1.  Initialize V0(si)=0 for all states si, Set K=1
2.  While k < desired horizon or (if infinite

horizon) values have converged
o  For all s,

3.  Extract Policy

Vk (si) =maxa p(sj | si ,a) R(s,a, s ')+γVk−1(sj)"# $%sj∈S
∑()

π k (si) = argmax
a

p(sj | si ,a) R(s,a, s ')+γVk−1(sj)"# $%sj∈S
∑()

Calculate	 V2(warmCar)	

Slide adapted from Klein and Abbeel 34

Assume	 ϒ=1	

For	 General	 Prac#ce,	 check	 can	 calculate	
V2(warmCar)	

	 	 0	 	 	 	 	 	 	 	 	 0	 	 	 	 	 	 	 	 0	

	 	 2	 	 	 	 	 	 	 	 	 1	 	 	 	 	 	 	 	 0	

Slide adapted from Klein and Abbeel

Vk (si) =maxa p(sj | si ,a) R(s,a, s ')+γVk−1(sj)"# $%sj∈S
∑()

35

Assume	 ϒ=1	

Value	 Itera#on	 	

	 	 0	 	 	 	 	 	 	 	 	 0	 	 	 	 	 	 	 	 0	

	 	 2	 	 	 	 	 	 	 	 	 1	 	 	 	 	 	 	 	 0	

V2():	 	 	 	 	 2.5	

Slide adapted from Klein and Abbeel

Vk (si) =maxa p(sj | si ,a) R(s,a, s ')+γVk−1(sj)"# $%sj∈S
∑()

36

Assume	 ϒ=1	

Computational Cost for 1
Update of V(s) for all s in
Value Iteration?

o  For all s,
 Vk (si) =maxa p(sj | si ,a) R(s,a, s ')+γVk−1(sj)"# $%sj∈S

∑()

37

Computational Cost Per
Iteration?

AS2

o  For all s,
 Vk (si) =maxa p(sj | si ,a) R(s,a, s ')+γVk−1(sj)"# $%sj∈S

∑()

38

Will Value Iteration Converge
for Infinite Horizon Problems?

39

Contraction Operator

•  Let O be an operator
•  If |OV – OV’| <= |V-V|’
•  Then O is a contraction operator

40

Will Value Iteration Converge?

•  Yes, if discount factor γ < 1 or end up in a
terminal state with probability 1

•  Bellman equation is a contraction if
discount factor, γ < 1

•  If apply it to two different value functions,
distance between value functions shrinks
after apply Bellman equation to each

41

Bellman Operator is a
Contraction (γ<1)

42

BV −BV ' = max
a

R(s,a)+γ p(sj | si ,a)V (sj)sj∈S
∑$

%&
'
()
−max

a '
R(s,a ')−γ p(sj | si ,a ')V '(sj)sj∈S

∑$
%&

'
()

≤maxa R(s,a)+γ p(sj | si ,a)V (sj)− R(s,a)+γ p(sj | si ,a)V '(sj)sj∈S
∑sj∈S

∑%
&'

(
)*

≤ γmax
a,si

p(sj | si,a)V (sj)−V '(sj)sj∈S
∑

≤ γmax
a,si

p(sj | si,a) V −V 'sj∈S
∑

= γ V −V '

≤ γmax
a

p(sj | si ,a)V (sj)− p(sj | si ,a)V '(sj)sj∈S
∑sj∈S

∑%&'
(
)*

= γmax
a

p(sj | si ,a)(V (sj)−V '(sj))sj∈S
∑$%&

'
()

|| V-V’|| = Infinity norm (find max difference over all states, e.g. max(s) |V(s) – V’(s) |

Properties of Contraction

•  Only has 1 fixed point (the point reach if apply a
contraction operator many times)
o  If had two, then would not get closer when apply

contraction function, violating definition of
contraction

•  When apply contraction function to any argument,
value must get closer to fixed point
o  Fixed point doesn’t move
o  Repeated function applications yield fixed point

43

VI Converges

•  Value iteration converges to unique
solution which is optimal value function

•  Proof: limk→∞Vk =V *

Vk+1 −V * ∞
= BVk −V * ∞

≤ γ Vk −V * ∞
≤ ...

≤ γ k+1 V0 −V * ∞
→ 0

44

Discuss and Report Back: Does
Initialization Impact Final
Value? Value Iteration Algorithm

1.  Init V0(si) for all states si

2.  k=1
3.  While k < desired horizon

or (if infinite horizon)
values have converged

o  For all s,
 Vk (si) =maxa p(sj | si ,a) R(s,a, s ')+γVk−1(sj)"# $%sj∈S

∑()

45

