
Homework 4
Optimization & ML

15-381/781: Artificial Intelligence (Fall 2016)
OUT: Oct. 30, 2016

DUE: Nov. 14, 2016 at 11:59pm

Instructions

Homework Policy

Homework is due on autolab by the posted deadline. Assignments submitted past the deadline will incur
the use of late days.

You have 6 late days, but cannot use more than 2 late days per homework. No credit will be given for
homework submitted more than 2 days after the due date. After your 6 late days have been used you will
receive 20% off for each additional day late.

You can discuss the exercises with your classmates, but you should write up your own solutions. If you find
a solution in any source other than the material provided on the course website or the textbook, you must
mention the source. You can work on the programming questions in pairs, but theoretical questions are
always submitted individually. Make sure that you include a README file with your andrew id and your
collaborator’s andrew id.

Submission

Please create a tar archive of your answers and submit to Homework 4 on autolab. You should have four files
in your archive: a completed problems.py and a completed bbproblems.py for the programming portion,
a PDF for your answers to the written component, and a README file with your Andrew ID and your
collaborators’ Andrew IDs. Your completed functions will be autograded by running through several test
cases and their return values will be compared to the reference implementation. There is a sample.txt and
a bbsamples.txt that contains sample inputs and outputs for reference.

1 Written

1.1 Convexity (20 points)

Which of the following mathematical programming problems are convex? Prove your statements. It might
be helpful to try sketching the objective functions or the sets we are optimizing over.

(a) (6 points) The optimization variables are x = (x1, x2) ∈ R2.

minimize 3x1 − 5x2

subject to x2
1 + x2

2 ≤ 1

1

(b) (6 points) The optimization variables are x = (x1, x2) ∈ R2.

minimize 3x1 − 5x2

subject to x2
1 − x2

2 ≤ 1

(c) (8 points) The optimization variables are x = (x1, . . . , xn) ∈ Rn. Also A is an m × n matrix and
b ∈ Rm.

minimize exp
(√∑n

i=1 x
2
i

)
subject to Ax ≤ b

1.2 Neural Networks (20 points)

In this question, you will explore the representation power of neural networks, and how multiple layers can
affect it. We will assume the input x ∈ {0, 1}n are binary vectors of length n. We will also use the true
binary threshold as the activation function f(z) = 1 if z > 0 and 0 otherwise. Note that the weights are still
allowed to be real numbers. The output will be the result of a single unit and thus be either 0 or 1. We can
think of using such a neural network to implement boolean functions.

(a) (4 points) Suppose n = 2 i.e. the input is a pair of binary values. Suppose we have a neural network
where we don’t have any hidden units and just a single output unit i.e. y = f(wTx + b) is the entire
network. What should w, b be if we want to implement boolean AND (i.e. y = 1 only when x = (1, 1)).
What about boolean OR?

(b) (1 point) Under the same conditions as above, what boolean function of two variables cannot be
represented? You just need to state one, and provide an explanation.

(c) (4 points) Suppose we now allow a single layer of hidden units i.e. y = f(wT z + b), zj = f(wT
j x+ bj).

Construct a neural network that can implement the boolean function you mentioned previously that
could not be represented before. The number of hidden units is up to you, but try to keep it as simple
as possible.

(d) (8 points) It turns out that for any number of input boolean variables, a single hidden layer is enough
to represent any boolean function. Describe a general scheme that one can use to construct such
a neural network for any boolean function (HINT: consider conjunctive normal form or disjunctive
normal form).

(e) (3 points) If a single layer is enough to represent all boolean functions, why would you ever want to
use multiple hidden layers? What does this suggest about designing deep neural network structures in
practice?

1.3 VC Dimension (20 points)

In this question, you will first prove two properties of VC-Dimension and then find the VC-Dimension of
a given concept class. When proving VCDim(C) = d, make sure that your proof shows a lower-bound
(VCDim(C) ≥ d) and a matching upper-bound (VCDim(C) ≤ d). The former is usually established by
showing an example of a set of size d that is shattered by C and the latter is usually established by proving
that no set of size at least d+ 1 can be shattered by C.

(a) (5 points) Prove that for any concept class C, VCDim(C) ≤ log(|C|).

(b) (5 points) Prove that for any two concept classes C′ ⊆ C, VCDim(C′) ≤ VCDim(C).

2

(c) (10 points) Let X = {0, 1}n be the set of n-bit binary vectors. For a set I ⊆ {1, . . . , n}, define hI as
follows. On a binary vector ~x = (x1, . . . , xn) ∈ X ,

hI(~x) =

(∑
i∈I

xi

)
mod 2 .

What is the VC-dimension of the class C = {hI |I ⊆ {1, . . . , n}}? Prove your claim. Hint: You might
find part (a) useful for this question.

1.4 Graduate Problem: Integer Programming (30 points)

Consider the following Vertex Cover problem. We are given as input an undirected graph G = (V,E), along
with “costs” cv ≥ 0 for all v ∈ V . We define a vertex cover to be a subset S ⊆ V such that, for each edge
e ∈ E, at least one of e’s endpoints is in S. The cost of a vertex cover S is cost(S) =

∑
v∈S cv. The goal is

to output a vertex cover S of minimum cost.

(a) (6 points) Formulate this problem as an IP.

(b) (4 points) Give the natural LP relaxation of the IP you gave in part (a).

(c) (10 points) Consider the following instance. G = Kn, the complete graph on n vertices. That is,
V = [n] and for each i, j ∈ [n] with i 6= j, the edge ij is in the graph. Also, let cv = 1 for all v ∈ V .
Let OPT denote the minimum cost of a vertex cover on this instance, and let OPTLP denote the value
of the LP on this instance. Compare OPTLP and OPT. There’s no need to compute them exactly –
just try to see if one is bigger than the other.

(d) (10 points) When one is given a solution to an LP relaxation of a problem, it is often a good idea to
try to “round it” to a solution to the original combinatorial problem. For example, suppose x ∈ RV is
an optimal solution to the LP (which we can find in polynomial time). Define the subset Sx ⊆ V by
Sx = {v ∈ V : xv ≥ 1/2}. Show that Sx is vertex cover. Then, show that cost(Sx) ≤ 2OPTLP , where
OPTLP is defined as in the previous problem. From this, conclude that Sx ≤ 2OPT, where OPT is
also defined as in the previous problem.

2 Programming

2.1 Handwritten Digit Classification [20 points]

We will use the numpy library (http://www.numpy.org/) for python to handle matrices and matrix opera-
tions. We will use numpy.ndarray to store 2D arrays that represent matrices. Matrix multiplication can be
done with A.dot(B) where A,B are both 2D numpy.ndarray objects. Be careful when mixing 2D arrays and
1D arrays since 1D arrays may represent either column or row vectors. For more details consult the online
documentation.

2.1.1 Loss Function

You will develop a linear softmax classifier to classify handwritten digits from the MNIST data set. We
will extend a bit the notation used in the class, and use a loss function that directly captures a k-class
classification tasks (as opposed to training k different binary classifiers), called the softmax or cross-entropy
loss. In our new setting, we have a training set of m example points of the form (x(i), y(i)), i = 1, . . . ,m,
with y(i) ∈ {0, 1}k (remember that k is the number of classes we’re trying to predict). Remember that both

x(i), y(i) are column vectors. The output y
(i)
j = 1 when j is the target class, and 0 otherwise. That is, if

3

http://www.numpy.org/

output values can take on one of 10 classes (as will be the case in the digit classification task), and the target
class for this example is the fourth class, then corresponding y(i) is simply

y(i) =



0
0
0
1
0
0
0
0
0
0


. (1)

This is sometimes called a “one-hot” encoding of the output class.

Under the model, our hypothesis function ŷ = hΘ(x) will now output vectors in Rk, where the value of an
entry of ŷj corresponds roughly to how likely we believe that the output is really class j (this will become
more concrete when we formally define the function class). For instance, the (hypothetical) output

ŷ = hΘ(x(i)) =



0.1
−0.2
2.0
5.0
0.1
−1.0
−5.0
1.0
0.4
0.2


(2)

would correspond to a prediction that the point x(i) is probably from the fourth class (the element with the
largest entry). Analogous to binary classification (where, if we wanted binary prediction we would simply
take the sign of the hypothesis function), if we want the to predict a single class label for the output, we
simply predict class j for which ŷj takes on the largest value.

Our loss function is now defined as a function ` : Rk × {0, 1}k → R+ that quantifies how good a prediction

is. In the “best” case, the predictions ŷj would be +∞ for the true class (i.e. for the element where y
(i)
j = 1)

and −∞ otherwise (of course, we usually won’t make infinite predictions, because we would then suffer very
high loss if we ever made a mistake, and we won’t get such predictions with most classifiers if we include a
regularization term). The loss function we use is the softmax loss, given by

`(ŷ, y) = log

 k∑
j=1

eŷj

− ŷT y. (3)

This loss function has the gradient

∇ŷ`(ŷ, y) =
eŷ∑k

j=1 e
ŷj

− y (4)

where the exponent eŷ is taken elementwise. Note that the gradient is a vector of size k because eŷ and y
are both vectors of size k and the denominator in the fraction is just a scalar.

In practice, you would probably want to implemented regularized loss minimization, but for the sake of this
problem set, we’ll just consider minimizing loss without any regularization (at the expense of overfitting a
little bit).

4

2.1.2 Linear Classifier

In this section, you’ll implement a linear classification model to classify digits. That is, our hypothesis
function will be

hΘ(x(i)) = Θ

[
x(i)

1

]
(5)

where Θ ∈ R10×785 is our matrix of parameters. Note that here we are taking the column vector x(i) and
adding a new row at the bottom that is just the constant 1. This is for convenience since this is equivalent
to Wx(i) + b with the parameters W, b put together into a single matrix Θ. Using a simple application of
the chain rule we can compute the gradient of our loss function for this hypothesis class

∇Θ`(hΘ(x(i), y) = ∇ŷ`(ŷ, y)
[
x(i)T 1

]
. (6)

where ŷ ≡ hΘ(x(i)) and where the gradient ∇ŷ(`(ŷ, y)) is given in (4) above. Note that this gradient is
multiplying a column vector with a row vector resulting in a matrix of the same dimension as Θ (this is also
known as the outer product of two vectors).

2.1.3 Downloading and setting up data set

Download the MNIST data set from http://yann.lecun.com/exdb/mnist/. You’ll want to specifically
download all the files

train-images-idx3-ubyte.gz

train-labels-idx1-ubyte.gz

t10k-images-idx3-ubyte.gz

t10k-labels-idx1-ubyte.gz

and uncompress them. Using the functions parse images and parse labels provided in the included
problems.py file, you can read these files using the code

X_train = parse_images("train-images.idx3-ubyte")

y_train = parse_labels("train-labels.idx1-ubyte")

X_test = parse_images("t10k-images.idx3-ubyte")

y_test = parse_labels("t10k-labels.idx1-ubyte")

After running these functions X train, for example, will be a 60000 × 784 numpy array where each row
corresponds to a flattened 28 by 28 greyscale image of a digit. Each pixel is a single floating point number
between 0 and 1 representing a grey. Similarly, y train is a 60000 × 10 array where each row is a one-hot
encoding of which digit is present in the image (ordered 0 through 9). Note that the examples are represented
by rows (as opposed to columns normally used in the notation) due to efficiency reasons.

2.1.4 Gradient Computation [5 points]

Here you will compute the gradient of the parameters Θ given a single example point x(i), y(i). You’ll
implement the following function:

5

http://yann.lecun.com/exdb/mnist/

def grad(Theta, x, y):

"""

Compute the gradient given input x and output y, and current parameters Theta

Note that this assumes the constant 1 has already been appended to the input

Arguments:

Theta: 10 x 785 numpy array of current parameters

x: 785 sized 1D numpy array of input

y: 10 sized 1D numpy array of output

Return:

A 10 x 785 numpy array gradient

"""

You may use the helper function softmax loss(yp,y) for the gradient of the loss function.

2.1.5 Stochastic gradient descent [15 points]

Implement the stochastic gradient descent algorithm. Recall from the notes that the SGD algorithm is:

function Θ = SGD({(x(i), y(i))}, hΘ, `, α)
Initialize: Θ← 0
For t = 1, . . . , T :

For i = 1, . . . ,m:
Θ← Θ− α∇Θ`(hΘ(x(i)), y(i))

return Θ

That is, we take small gradient steps on each example.

You’ll implement the following function:

def softmax_sgd(X,y, Xt, yt, epochs=10, alpha = 0.01):

"""

Run stochastic gradient descent to solve linear softmax regression.

Arguments:

X: numpy array where each row is a training example input of length 784

y: numpy array where each row is a training output of length 10

Xt: numpy array of testing inputs

yt: numpy array of testing outputs

epochs: number of passes T to make over the whole training set

alpha: step size

Return:

A list of tuples (Train Err, Train Loss, Test Error, Test Loss) for each epoch

These should be computed at the end of each epoch

"""

You may use the included helper function get errors(yp, y, ypt, yt) to compute the losses and er-
rors.

2.2 Branch and Bound [20 points]

You will use branch and bound in order to solve binary integer programs of the form: minimize Cx under
the constraint Ax ≤ b. Branch and bound searches for an optimal assignment to the variables using linear
programming relaxations to prune branches of the search tree.

6

2.2.1 Binary Branch and Bound

We will search for an optimal assignment using depth-first search, where we assign values to the variables
in index order. When a node is selected for expansion we check if the node’s subtree can be pruned (i.e.
whether we need to continue assigning to the rest of the variables). If the value of the LP relaxation is
greater than the best assignment so far then the there is no need to further expand the node, since the LP
is a lower bound which means no matter how we assign to the remaining variables there is no way to attain
a smaller value. The subtree can also be pruned if the LP assignment consists of binary values for all the
variables and is the best seen so far. Then we update the best assignment seen so far and continue searching.
Otherwise we expand the children of the node i.e. assign the next variable in index order.

In this assignment the i-th variable will be assigned at depth i in the search tree. So the root has no
assignments. The first level assigns to x0. Since we are pruning parts of the tree make sure to explore the
xi = 0 assignment before xi = 1. This is necessary since we ask you to output the nodes expanded by your
branch and bound. The DFS exploration is the same method as was discussed in lecture.

2.2.2 LP Relaxation

The LP relaxaion of an integer program is simply removing the restriction that the variables must have
integer assignments. The relaxations have known polynomial time solutions. As discussed in class when
minimizing an objective the optimal value of the LP relaxation will be a lower bound on the optimal integer
assignment. Hence, the LP relaxation is used to prune the search tree.

2.2.3 cvxopt and numpy

You will use cvxopt to solve the linear programming relaxations. numpy will also be useful for manipulating
the constraint matrices. Several useful code fragments are listed below.

#import cvxopt stuff

from cvxopt import matrix, solvers

#minimize Cx given Ax <= b

#these take matrices as input (see below)

solution = solvers.lp(C, A, b)

#get the variable assignments

var = solution[’x’]

#get the value of the assignment

val = solution[’primal objective’]

#check if an optimal solution was found

status = solution[’status’] == ’optimal’

#remove some of the output from the solver

solvers.options[’show_progress’] = False

#import numpy

import numpy as np

#create numpy array from python list

np.array([[1.0,2.0,3.0],[4.0,5.0,6.0]])

#create cvxopt matrix from numpy array

matrix(np.array([[1.0,2.0,3.0],[4.0,5.0,6.0]]))

7

The input binary IP problems have the form minimize Cx with the constraints Ax ≤ b and ∀i. xi ∈ {0, 1}.
C is a list of n coefficients. A is a list of lists with m rows and n columns. b is a list of m values. A does not
restrict the domain of the variables x to be binary. You must add these constraints. See bbsamples.txt for
input samples.

You will output a tuple consisting of (value, assignment, expandlist). Value is the value of the objective
for an optimal assignment (None if no feasible solution). assignment is an optimal assignment list (None if
no feasible solution). expandlist is the list of nodes expanded by branch and bound. Nodes are labeled by
the assignments to the variables. Thus the root is []. The left child of the root with x0 = 0 is [0] and the
right child is [1]. See bbsamples.txt for sample inputs and outputs.

Complete solve(A,B,C) in bbproblems.py.

8

	Written
	Convexity (20 points)
	Neural Networks (20 points)
	VC Dimension (20 points)
	Graduate Problem: Integer Programming (30 points)

	Programming
	Handwritten Digit Classification [20 points]
	Loss Function
	Linear Classifier
	Downloading and setting up data set
	Gradient Computation [5 points]
	Stochastic gradient descent [15 points]

	Branch and Bound [20 points]
	Binary Branch and Bound
	LP Relaxation
	cvxopt and numpy

