
Homework 2
Planning and Graphical Models

15-381/781: Artificial Intelligence (Fall 2016)
OUT: Sept 21, 2016

DUE: Oct 3, 2016 at 11:59pm

Instructions

Homework Policy

Homework is due on autolab by the posted deadline. Assignments submitted past the deadline will incur
the use of late days.

You have 6 late days, but cannot use more than 2 late days per homework. No credit will be given for
homework submitted more than 2 days after the due date. After your 6 late days have been used you will
receive 20% off for each additional day late.

You can discuss the exercises with your classmates, but you should write up your own solutions. If you find
a solution in any source other than the material provided on the course website or the textbook, you must
mention the source. You can work on the programming questions in pairs, but theoretical questions are
always submitted individually. Make sure that you include a README file with your andrew id and your
collaborator’s andrew id.

Submission

Please create a tar archive of your answers and submit to Homework 2 on autolab. You should have three
files in your archive: a completed problems.py for the programming portion, a PDF for your answers to the
written component, and a README file with your Andrew ID and your collaborators’ Andrew IDs. Your
completed functions will be autograded by running through several test cases and their return values will be
compared to the reference implementation. There is a sample.txt that contains sample inputs and outputs
for reference.

1 Written [70 points]

1.1 Motion Planning [30 points]

Let S be a set of disjoint obstacles (simple polygons) in the plane, and let n denote the total number of their
edges. Assume that we have a point robot moving on the plane that can touch the edges of the obstacles.
(That is, we treat the obstacles as open sets.) The robot starts at the pstart position and must get to the
pgoal position using the shortest collision-free path. In class, we proved that any shortest path between pstart
and pgoal is a polygonal path whose inner vertices are the vertices of the obstacles. You may use this result
in your answer to the following questions.
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concave vertex
convex vertices

Figure 1: An example of a polygon with both convex and concave vertices.

1.1.1 [15 points]

We now consider two different kinds of vertices on obstacles.

i. A vertex whose internal angle formed by its two edges is less than 180◦ is called convex.

ii. A vertex whose internal angle formed by its two edges is greater than 180◦ is called concave.

See Fig. 1.

Extend the theorem from class by proving that a shortest path from pstart to pgoal is a polygonal path whose
inner vertices (if they exist) correspond to obstacles’ convex vertices.

1.1.2 [15 points]

Show that for any pstart and pgoal the number of segments on a shortest path is bounded by O(n). Give an
example where it is Θ(n).

1.2 Solving Special Cases of Classical Planning [20 points]

Suppose we are given a STRIPS planning instance in which all of the operators have no preconditions. Show
that one can determine in polynomial time if it is satisfiable.

1.3 Graphical Models [20 points]

You are a basketball coach interested in determining the best way to spend your practice time in order to win
your upcoming game. Specifically, you would like to know if you should spend your time practicing defence
or practicing offence. If you practice defence, the probability the other team scores at least 100 points is
0.3, while if you don’t practice defence the probability they score at least 100 points is 0.8. However, if you
practice defence, the probability that your best player fouls out of the game is 0.5, while if you don’t practice
defence the probability is 0.2. Next, if you practice offence and your best player doesn’t foul out, then the
probability you score at least 100 points is 0.85; if you practice offence and your best player fouls out, the
probability is 0.6; if you don’t practice offence and your best player doesn’t foul out, the probability is 0.5;
while if you don’t practice offence and your best player fouls out the probability is 0.2. Finally, if you score
at least 100 points and so does the other team, you win with probability 0.6, while if both teams score less
than 100 points than you win with probability 0.4. (Of course, if you score at least 100 points and the other
team doesn’t, you win with probability 1, and vice versa if you score at most 100 points and the other team
scores at least 100.)
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1.3.1 [10 points]

Provide a Bayes’ Net describing all of the random variables and the dependencies. Add tables indicating all
of the probabilities.

1.3.2 [10 points]

Should you practice offence or defence? (Assume that you can’t practice both.)

1.4 Grad Problem: Boolean Satisfiability and the Lovász Local Lemma [20
points]

Perhaps the most famous CSP is boolean satisfiability, wherein an algorithm is given a boolean formula and
must output whether or not it is satisfiable. We assume all bolean formulas are given in conjunctive normal
form (CNF). Thus, a boolean formula φ on variables x1, . . . , xn can be written as φ = C1 ∧ · · · ∧Cm, where
each Cj is a clause of the form zi1 ∨ · · · ∨ zik , 1 ≤ i1 < · · · < ik ≤ n, where each zit is a literal, i.e. it is either
xit or x̄it (i.e., the variable xit negated). An assignment is simply a mapping a : {1, . . . , n} → {T, F}, and
an assignment a satisfies the formula φ if φ evaluates to true (T ) when each variable xi is replaced by the
boolean value a(i). More concretely, for our purposes, this means that for each clause Cj = zi1 ∨ · · · ∨ zik ,
at least one literal zit evaluates to true under the assignment a, i.e., zit = xit and a(i) = T or zit = x̄it and
a(i) = F . We will focus on k-satisfiability, which is the boolean satisfiability problem with the additional
promise that each clause contains exactly k variables.

The probabilistic method is a strategy for proving the existence of satisfying assignment for CSPs. Essentially,
one defines a way of randomly generating assignments for a CSP, and then argues that such a randomly
generated assignment has a nonzero probability of satisfying the CSP. This would then imply that there
must be some satisfying assignment to the CSP, as otherwise the probability that a randomly generated
assignment satisfies the CSP is necessarily 0.

1.4.1 [5 points]

Suppose φ = C1 ∧ · · · ∧ Cm is a k-CNF with m < 2k clauses. Use the probabilistic method to prove that it
has a satisfying assignment.

Hint: Consider setting each variable to true or false with equal probability. Determine the probability that
a clause evaluates to false, and then use a union bound (see: https://en.wikipedia.org/wiki/Boole’s_

inequality) to upper bound the probability that φ is not satisfied.

1.4.2 [5 points]

Show that the result in (a) is tight. Namely, give a k-CNF φ with 2k clauses that is not satisfiable.

1.4.3 [5 points]

The Lovász Local Lemma (LLL) is a beautiful result that intuitively states the following. Suppose you
have a bunch of “bad” events that you want to avoid, say when trying to prove the existence of something
via the probabilistic method. If you have some amount of independence between the events, you can take
many “localized” union bounds to prove that it is possible to avoid all the bad events. Here is a formal
statement:1

1This is just one of the simplest versions of the lemma. For more information/more general versions, wikipedia’s a good
source: https://en.wikipedia.org/wiki/Lovasz_local_lemma.
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Lemma 1. Let A1, . . . , Am be a sequence of events such that each event occurs with probability at most p
and such that each event is independent of all the other events except for at most d of them. If

ep(d+ 1) ≤ 1,

where e = 2.718 . . . is Euler’s number, then there is a nonzero probability that none of the events occurs.
That is,

Pr[¬A1 ∧ · · · ∧ ¬Am] > 0 .

Using the LLL, prove the following. Suppose φ is a k-CNF in which any clause shares a variable with at
most d := 2k/e− 1 other clauses. Prove that φ has a satisfying assignment.

1.4.4 [5 points]

Conclude that any k-CNF in which each variable appears in at most ` := 1
k · (2

k/e − 1) + 1 formulas is
satisfiable.

2 Programming [30 points]

Amayon, the online shopping conglomerate, has decided to change their delivery strategy. Instead of using a
single drone to deliver to multiple residences, they now use many drones, each of which delivers to a unique
residence. This way, there is no need to visit residences that haven’t ordered new packages, and drones can
be summoned on demand for every order. However, now the problem is that drones may end up colliding if
their paths cross. Your goal is to plan paths for drones such that they each visit their designated residences
and no paths ever cross.

Given a map of a neighborhood, along with the starting positions of the drones, you must construct a plan
for all drones so that every residence is visited by its designated drone, and none of the paths cross at any
point. The map will be a 2D rectangular grid divided into discrete squares. Each square is either free, an
obstacle, or a residence.

As a visual reference, here is an ASCII rendition of a neighborhood map with 2 residences and drones and
some walls:

0#1

.#.

A.B

The 0 and 1 represent drones, and the A and B represent residences. 0 is matched with A, and 1 is matched
with B. This will be represented in code as 5 parameters: the number of rows, the number of columns, a list
of wall positions, a list of residence positions, and a list of drone starting positions. For this example, there
are 3 rows and 3 columns. The wall positions are

[

(0,1),

(1,1)

]

The residence positions are

[

(2,0),

(2,2)

]

and are also indexed in this order. The drone start positions are
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[

(0,0),

(0,2)

]

and are also indexed in this order. A drone is matched up with the residence with the same index (there are
always the same number of drones and residences).

There are multiple types of facts associated with every position (row,col) of the grid. There is fact
wall(row,col) that represents a wall at that position. For every residence i, there is a fact residence(i,row,col)
that represents residence i to be visited at that position. For every drone i, there is a fact drone(i,row,col)
that represents drone i being at (row,col). There is also a fact occupied(row,col) to indicate that some
drone has been at (row,col) and is used to ensure paths don’t cross.

There are two types of actions associated with every position (row,col) of the grid: movement actions
and visit actions. There are up to 4 movement action for every drone i: up(i,row,col), down(i,row,col)
,left(i,row,col), right(i,row,col). Only the actions that do not attempt to move off the grid are present
e.g. up(i,0,0),left(i,0,0) don’t exist because those would try to move off the grid. The preconditions
for a movement action is for a drone i to be at the position and for the corresponding adjacent square to be
free of walls or other drones or was not visited by a previous drone e.g. the preconditions for right(i,0,0)
is drone(i,0,0) ∧ ¬occupied(0,1) ∧ ¬wall(0,1). The postcondition is an update of the drone’s position
e.g. the postcondition for right(i,0,0) is occupied(0,1) ∧ drone(i,0,1) ∧ ¬drone(i,0,0). Apart
from movement, there is also a visit action for every i, visit(i,row,col), that makes the drone i visit
residence i on the same square. The preconditions are drone(i,row,col) ∧ residence(i,row,col). The
postcondition is ¬residence(i,row,col) ∧ ¬drone(i,row,col), which removes the residence from further
consideration and also prevents the drone from further actions.

The goal is for every residence to be visited by its corresponding drone, and all the paths don’t cross, which
translates to ¬residence(i,row,col) for all residences and their corresponding positions. The initial state
should have drone(i,row,col) facts placing each drone at its starting position. The starting drone positions
should also be covered by occupied(row,col) to indicate that those spots have been visited by drones. The
wall(row,col) facts should place the walls. The residence(i,row,col) facts should place the residences.
Finally, you should also include all the negative facts that are true as well (e.g. ¬residence(i,row,col)
for every position that does not have residence i, ¬drone(i,row,col) for every position that does not have
drone i, ¬occupied(row,col) for every position that has not been visited by a drone, and ¬wall(row,col)
for every position with no walls).

Note that you are free to use your own data structures to represent facts and you do not need to use the
same names. We will not be explicitly checking how you keep track of facts.

For example inputs and outputs, see sample.txt.

2.1 Set Level Heuristic [15 points]

Implement the set level heuristic(nrow,ncol,wall,res,start) function by constructing a planning
graph and returning the first level of facts where all the goal facts are present and no two goal facts are
mutex. You should start from the initial state of the problem.

2.2 Planning [15 points]

Implement plan(nrow,ncol,wall,res,start), either by using A* with the set level heuristic, or Graphplan
and Extract-Solution. Note that for A* a node is a complete set of facts that are true (including negative
facts), and you will need to reconstruct the planning graph every time you compute the heuristic; also, the
initial set of facts of the planning graph should start from the current node’s set of facts. You should return

5



the solution in the form of a filled in grid. For the example given above, the solution would look something
like this:

0#1

0#1

0.1

and be represented in code as

[

[0,-1,1],

[0,-1,1],

[0,None,1]

]

The path that drone 0 took is filled in with its index of 0, and same with drone 1. The corresponding
residences, since they have been visited, are also just filled in with the index of the drone. Walls are
represented by −1. Free spaces should be represented by the python value None.
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