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NEED FOR PROBABILISTIC MODELING
• So far, our rational problem-solving or planning agent enjoyed:

o Known environment: It can access all the necessary 
information to model the world and to list the actions that 
can be taken in each state together with their effects

o Full observability: Its “sensors” give access to the complete 
state of the environment

o Deterministic world: The next state st+1 of the 
environment is completely determined by (st,at)

• Unfortunately, ignorance, laziness, sensing limitations, make 
uncertainty the signature of real-world scenarios → need for 
Probabilistic models for knowledge representation & reasoning 
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PROBABILISTIC INFERENCE

• A probability model is completely determined by the 
joint probability distribution for all the random 
variables {X1, X2, …, Xn} → P(X1, X2, …, Xn )

• The joint probability distribution is the “knowledge base” 
from which answers to all questions may be derived

• Probabilistic inference: Compute probability of a query 
variable (or variable set) taking on a value (or set of 
values) given some evidence on a subset of variables

• Posterior probability  Pr[Xj = xj | X1=e1,..., Xk=ek]?
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X1∼Car {Sedan, SUV, Coupe, Truck}
X2∼Color {red, blue, yellow, black}

Xi are discrete rv → P(X1, X2) can  be 
given in tabular form: 4x4=16 parameter 
values need to be assigned

• Joint probability distribution:
P(Car=x∧ Color=y) ∀(x,y) ∈X1×X2

• Joint probability:
P(Car=Sedan ∧ Color=red) = 0.05
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RECALL: JOINT PROBABILITY DISTRIBUTION



RECALL: MARGINAL PROBABILITY DISTRIBUTION
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• Marginal probability:
P(Car=Sedan)? P(Color=red)?

• Marginal probability distribution: the 
distribution of one variable ignoring all 
other variables (i.e., given all their 
possible outcomes)
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RECALL: MARGINAL PROBABILITY DISTRIBUTION
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• Marginal distribution of a subset of variables

• V is a set of n > 2 variables, we want to compute the marginal 
probability distribution for a subset of two of them, X1, X2

V = {X1, X2,Y } where Y is a set of additional variables

P (X1, X2) = P (Marginal of X1, X2) =

X

y2Y

P (X1, X2,y)



RECALL: CONDITIONAL PROBABILITY DISTRIBUTION
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• Conditional probability:
P(Car=Sedan | Color=red)?

• Conditional probability distribution: the 
joint distribution of X1 given the value 
of the other variable X2
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P (X1|X2) =
P (X1, X2)

P (X2)
=

Joint(X1, X2)

Marginal(X2)

P (X1 = SUV | X2 = red) =
P (X1 = SUV, X2 = red)

P (X2 = red)
=

0.2

0.05 + 0.2 + 0 + 0.1
= 0.57



RECALL: CONDITIONAL PROBABILITY DISTRIBUTION
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• Conditional probability distribution: the distribution of Xi
given the value of the all other variables Xj, j=1, …, n, j≠i 

• Conditional probability distribution: the distribution of a 
subset of Xi given the value of all the other variables

P (X1, . . . , Xq | Xq+1, . . . , Xn) =
P (X1, . . . , Xn)

P (Xq+1, . . . , Xn)
=

Joint(all variables)

Marginal(given variables)

• For three variables:

P (X1 | X2, X3, . . . , Xn) =
P (X1, X2, X3, . . . , Xn)

P (X2, X3, . . . , Xn)
=

Joint(all variables)

Marginal(given variables)

P (X1 | X2, X3) =
P (X1, X2, X3)

P (X2, X3)



RECALL: NORMALIZATION CONSTANTS
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• When using conditionals, marginals play the role of 
normalization constants

P (X1 = SUV | X2 = blue) =
P (X1 = SUV, X2 = blue)

P (X2 = blue)

P (X1 = Sedan | X2 = blue) =
P (X1 = Sedan, X2 = blue)

P (X2 = blue)

) P (X1 = x | X2 = blue) = ↵P (X1 = x,X2 = blue)

Is a normalization constant for the distribution P(X1 | X2=blue) 



RECALL: CHAIN/PRODUCT RULE
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• P (X1, X2) = P (X2 | X1)P (X1) = P (Conditional)P (Marginal(given))

• P (X1, X2, X3) = P (X3 | X2, X1)P (X2 | X1)P (X1)

• P (X1, X2, X3, X4) = P (X4 | X3, X2, X1)P (X3 | X2, X1)P (X2 | X1)P (X1)

• . . .

• P (X1, . . . , Xn) = P (Xn | Xn�1, . . . , X1)P (Xn�1 | Xn�2, . . . , X1) · · ·P (X2 | X1)P (X1)

P (X1, . . . , Xn) =
nY

i=1

P (Xi |
i�1\

j=1

Xj)



RECALL: MARGINALS BY CONDITIONING
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Conditioning: Using the product rule, marginals can be 
computed using conditional probabilities: 

P (X1) =
X

Xi
i=2,...,n

P (X1, X2, . . . , Xn) =
X

Xi
i=2,...,n

P (X1 | X2, . . . , Xn)P (X2, . . . , Xn)

Sums have to be intended as summing up over all possible 
combinations of values of the set of variables X2,…Xn



RECALL: INDEPENDENCE
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• Two RVs are independent if: P(X1, X2) = P(X1)P(X2) 

• n variables are independent if:  P(X1, X2, ..., Xn) = P(X1)P(X2)...P(Xn)

Joint Marginal Joint Marginal

Dependence Independence

P(x)P(y) = P(x,y) ∀(x,y) ∈X×Y



RECALL: CONDITIONAL INDEPENDENCE
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• X1 and X2 are conditionally independent given X3 if:    
P(X1 | X2, X3 ) = P(X1 | X3) 

• Once the value of X3 is known, knowing X2 doesn’t tell 
anything about X1 

• Another way of saying the same thing is:                                
P(X1, X2 | X3 ) = P(X1 | X3) P(X2 | X3)

• In a sense, the dependence between X1 and X2 “dissolves” 
once the knowldge about X3 is made available



RECALL: CONDITIONAL INDEPENDENCE
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• Example: John and Mary work in the same place and come to 
work by different transportation means. In spite of this, the 
fact that John is late at work might say something about the 
fact that also Mary is late (e..g, because of train strike that 
would affect all transportation means). Therefore, John being 
late and Mary being late are not independent events

• However, if we know that there is a train strike (given 
evidence), then knowing about John being late doesn’t add 
anything about Mary being late 

• → The two events are conditionally independent given the 
knowledge of train strike 



RECALL: CONDITIONAL INDEPENDENCE

15Example from Mark Craven



RECALL: CONDITIONAL INDEPENDENCE

16Example from Mark Craven



RECALL: BAYES RULE
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P (X1 | X2) =
P (X2 | X1)P (X1)

P (X2)
=

P (X2 | X1)P (X1)P
X1

P (X2 | X1)P (X1)

• In some (many) cases it’s easier to estimate P(A|B) 
rather than P(B|A)

• For instance, A =symptom, B=cause

P (X1 | X2, X3) =
P (X3 | X2, X1)P (X2 | X1)P (X1)

P (X2)P (X3 | X2)



BAYESIAN NETWORKS
• Graphical data structure for conditional independence 

assertions → A compact specification of full joint distributions 
• A set of nodes, one per variable
• A directed, acyclic graph (link ≈ “directly influences”)

o A node is a parent of a child (or successor) if there is 
an arc from the former to the latter

o If there is a directed chain of nodes, a node is ancestor of 
another if it appears earlier in the chain, a descendant if it 
appears later
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BAYESIAN NETWORKS
• A conditional distribution for each node given its 

parents: P(Xi | Parents(Xi))
• It can be a Conditional Probability Table (CPT) giving 

the distribution over Xi for each combination of the 
parent values
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Weather is conditionally 
independent of other variables
Toothache and Catch are conditionally
independent given Cavity



EXAMPLE
• I’m at work, neighbor John calls to say my alarm is 

ringing, but neighbor Mary doesn’t call. Sometimes it’s 
set off by minor earthquakes. Is there a burglar? 

• Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls
• Network topology reflects “causal” knowledge: 

o A burglar can set the alarm off
o An earthquake can set the alarm off 
o The alarm can cause Mary to call
o The alarm can cause John to call 

20



EXAMPLE
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A COMPACT REPRESENTATION
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• A CPT for binary variables Xi each with k parents has 2k

rows for the combination of parent values

• If each variable has no more than k parents, the  network 
requires O(n2k) parameter values to specify the CPTs

• → The BN grows linearly with n, while the full joint 
distribution goes as O(2n)

• E.g., in the burglary example: 1+1+4+2+2=10 numbers, 
vs. 25-1=31 for the full joint distribution



GLOBAL SEMANTICS

23

Global semantics: define the full joint distribution as 
the product of the local conditional distributions

• This defines what a Bayes network means: a compact 
representation of a joint probability distribution in terms 
of conditional distribution

＊

P (x1, x2, . . . , xn) ⌘ P (X1 = x1 ^X2 = x2 ^ . . . Xn = xn)

=
Qn

i=1 P (xi | Parents(Xi))



NUMERICAL EXAMPLE
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• J=T, M=T, A=T, B=T, E=T is indicated as j,m,a,b,e

P(b|o)?
It’s not in the conditional 
distributions of the network.
It needs to be computed by 
inference → next lecture!

P (j,m, a,¬b,¬e) ⌘ P (j ^ m ^ a ^ ¬b ^ ¬e)
= P (j | a)P (m | a)P (a | ¬b,¬e)P (¬b)P (¬e)
= 0.9⇥ 0.7⇥ 0.001⇥ 0.999⇥ 0.998 ⇡ 0.00063



GLOBAL SEMANTICS
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• The derivation stems from the chain rule:

P (x1, . . . , xn) =
nY

i=1

P (xi | xi�1, . . . , x1)

• This holds for any set of variables, in particular, by 
numbering the variables in a way that is consistent with the 
partial order implicit in the graph structure,  it becomes 
equivalent to (＊)

P (x1, . . . , xn) = P (xn | xn�1, . . . , x1)P (xn�1 | xn�2, . . . , x1) · · ·P (x2 | x1)P (x1)



LOCAL SEMANTICS
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Local semantics: each node is conditionally independent of
its non-descendants given its parents

U1, Um = Parents
Y1, Yn = Descendants
Zij = Other nodes from which 
X is conditionally independent

Local semantics ⟺ Global semantics



MARKOV BLANKET
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Each node is conditionally independent of all others given 
its Markov blanket: parents + children + children’s parents 



CONSTRUCTION OF A BN
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A method such that a series of locally testable assertions of 
conditional independence guarantees the required global semantics



ORDER MATTERS (FOR EFFICIENCY)
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• Parents of Xi should contain all those nodes in X1,…,Xi-1 that 
directly influence Xi: arcs should go from causes to effects, 
rather than the reverse, that would require to specify 
additional dependencies among otherwise independent causes

JohnCalls

MaryCalls

Alarm

Burglary

Earthquake

MaryCalls

Alarm

Earthquake

Burglary

JohnCalls

(a) (b)

• Order: M, J, A, B, E
• If M=T then likely Alarm=T, which makes likely 

that J=T → M parent of J
• If both M=T & J=T, then it’s likely that A=T → 

M and J parents of A
• If A=T then M and J do not give any information 

about B → A is the only parent of B
• If A=T then E is likely, but if also B=T, then this 

would explain A → Both A and B are parents of E



ORDER MATTERS (FOR EFFICIENCY)
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JohnCalls

MaryCalls
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Alarm

Earthquake

Burglary

JohnCalls

(a) (b)
• Order: M, J, A, B, E
• 31 parameter values are needed to specify the CPTs!
• A number of “unnatural” probability judgments need to be quantified

• Independently from the order, any network represents the same joint 
probability distribution



INDEPENDENCE & 
INFORMATION PROPAGATION
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• Question: Given a BN structure what dependence and 
independence relationships are represented?

• How information propagates over the network?

15 of the total of 53 dependence and 
independence statements encoded in the BN



INDEPENDENCE & 
INFORMATION PROPAGATION
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Types of probabilistic relationships

Figure from M. Lewicki



INDEPENDENCE & INFORMATION
PROPAGATION: DIRECT CONNECTION
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• If X and Y are connected by an edge, then X
and Y are dependent

• Information can be transmitted over one edge
• Burglary and Alarm are dependent: 
• Knowing that a burglary has taken place 

increases the belief that the alarm went off
• Knowing that the alarm went off increases 

the  belief that there has been a burglary



DIRECT CONNECTION
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• If X and Y are connected by an edge, then X and Y are 
dependent. Information can be transmitted over one edge

• Burglary and Alarm are dependent: 
• Knowing that a burglary has taken place 

increases the belief that the alarm went off
• Knowing that the alarm went off increases 

the  belief that there has been a burglary.



SERIAL CONNECTION
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• If A is not observed, B and WC are dependent
• Information can be transmitted between B and WC through A if 

A is not observed

• If A is observed, B and WC are independent
• Information cannot be transmitted between B and WC through 

A.  Observing A blocks the information path



SERIAL CONNECTION
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• In absence of hard evidence on the middle variable Alarm, evidence 
on Burglary updates our belief on Alarm, and in turn this affects 
our belief about the state of WatsonCalls. The opposite is also true.

• If we have hard evidence on Alarm, any information about the state 
of Burglary will not make us change our belief about WatsonCalls
(and vice versa)



DIVERGING CONNECTION
(COMMON CAUSE)
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• If Z is not observed, X, Y, …W are dependent
• Information can be transmitted through Z among its children

• If Z is observed, X, Y, …W are independent
• Information cannot be transmitted through Z among its children.  

Observing Z blocks the information path



DIVERGING CONNECTION
(COMMON CAUSE)
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• If we have no hard evidence on Earthquake, then receiving 
information about Alarm influences our belief about Earthquake, as 
earthquake is a possible explanation for alarm. The updated belief 
about Earthquake in turn make us update our belief about the state 
of RadioNews. Similar arguments hold for the opposite case 

• If the state of Earthquake is known, if information is received about 
the state of Alarm, this information is not going to change our belief 
about the state of Earthquake, and consequently we are not going to 
update our belief about RadioNews.



CONVERGING CONNECTION
(COMMON EFFECT)
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• If neither Z nor any of its descendants are 
observed, X and Y are independent.

• Information cannot be transmitted through Z 
among parents of Z.

• If Z or any of its descendants are 
observed, X and Y are dependent. 

• Information can be transmitted through Z 
among parents of Z if Z or any of its 
descendants are observed. Observing Z or its 
descendants opens the information path. 



CONVERGING CONNECTION
(COMMON EFFECT)

40

• If no evidence is available on Alarm, then information on Burglary 
will not provide any derived information about Earthquake: burglary 
is not an indicator of earthquake, and vice versa. 

• If evidence is available on Alarm, then information on Burglary will 
provide an explanation for the evidence that was received about the 
state of Alarm, and thus either confirm or dismiss Earthquake as the 
cause of the evidence received for Alarm. The opposite also holds true. 



EXPLAINING AWAY
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• The property of converging connections, X → Z ← Y, that 
information about the state of X (or Y) provides an explanation for 
an observed effect on Z, and hence confirms or dismisses Y (or X) 
as the cause of the effect, is often referred to as explaining away or 
as “intercausal inference”. 

Getting a radio report on earthquake provides strong evidence that the 
earthquake is responsible for a burglar alarm, and hence explaining away
a burglary as the cause of the alarm.



TYPES OF REASONING
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Different choices 
for Query and 
Evidence variables

Figure from Korb and Nicholson



USE OF BAYESIAN NETWORKS
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• Diagnosis: P(cause | symptom)?
• Prediction: P(symptom | cause)?
• Classification: maxclass P(class | data)
• Decision-making (given a cost function)



USE OF BAYESIAN NETWORKS
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Raint
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Temporal models with hidden variables: Hidden Markov Models (HMM)

• The variable representing the state of the environment at time t , 
Raint(T/F), is not directly observable (hidden) but defines causal dynamics

• The variable Umbrellat(T/F) is the evidence variable at time t
• Filtering / State estimation: Probability of Raint given evidence in 1:t
• Prediction: Probability of Raint+1 given evidence in 1:t
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Figure: Chen, 
Hellerstein, 
Parikh, UIST 
2010


