
CMU 15-781
Lecture 7:
Planning III

Teacher:
Gianni A. Di Caro

15781 Fall 2016: Lecture 7

PLANNING GRAPHS

• Graph-based data structure representing a
polynomial-size/time approximation of the
exponential search tree

• Can be used to automatically produce good
heuristic estimates (e.g., for A*)

• Can be used to search for a solution using the
GRAPHPLAN algorithm

2

15781 Fall 2016: Lecture 7

PLANNING GRAPHS

• Leveled graph: vertices organized into
levels/stages, with edges only between levels

• Two types of vertices on alternating levels:
o Conditions
o Operations

• Two types of edges:
o Precondition: from condition to operation
o Postcondition: from operation to condition

3

15781 Fall 2016: Lecture 7

GENERIC PLANNING GRAPH

4

Condition

• 𝑆0 contains all the conditions that hold in initial state

15781 Fall 2016: Lecture 7

GENERIC PLANNING GRAPH

5

Condition

Precondition

•Add operation to level 𝑂𝑖 if its preconditions appear in level 𝑆𝑖

Level O0Level S0

15781 Fall 2016: Lecture 7

GENERIC PLANNING GRAPH

6

Condition
No-Op

(Persistent action)

Level S1Precondition

• Add condition to level 𝑆𝑖 if it is the
postcondition of an operation (it is in
ADD or DELETE lists) in level 𝑂%&'

• Keep a previous condition of no action
negates it (persistence, no-op action)

15781 Fall 2016: Lecture 7

CONDITIONS MONOTONICALLY INCREASE

7

O1

No-Op

No-Op

No-Op

No-Op

No-Op

No-Op

No-Op
O1

O2

#Conditions
(always carried forward by no-ops)

Slide based on Brafman

𝑝

¬𝑞

¬𝑟

𝑝

¬𝑞

¬𝑟

¬𝑝

𝑝

¬𝑞

¬𝑟

¬𝑝

15781 Fall 2016: Lecture 7

GENERIC PLANNING GRAPH

8

…
…

…

Condition

Operation

No-Op
(Persistent action)

Precondition
Postcondition

Level O2Level S2

• Repeat …

15781 Fall 2016: Lecture 7

GENERIC PLANNING GRAPH

9

…
…

…

• → The level j at which a condition first appears is a (good) estimate
of how difficult is to achieve that condition

• → Can optimistically estimate how many steps it takes to reach a
goal g (or sub-goal gi) from the initial state

Idea: 𝑆𝑖 contains all conditions that
could hold at stage 𝑖 based on past
actions; 𝑂𝑖 contains all operations
that could have their preconditions
satisfied at time 𝑖
No ordering among the operations
is assumed at each stage, they
could be executed in parallel

15781 Fall 2016: Lecture 7

OPERATIONS MONOTONICALLY INCREASE

10Slide based on Brafman

O1

No-Op

No-Op

No-Op

No-Op

No-Op

No-Op

No-Op
O1

O2

#Operations
(as a result of conditions monotonic increase, that keep
previous preconditions hold and set new preconditions true)

𝑝

¬𝑞

¬𝑟

𝑝

¬𝑞

¬𝑟

¬𝑝

𝑝

¬𝑞

¬𝑟

¬𝑝

15781 Fall 2016: Lecture 7

MUTUAL EXCLUSION LINKS
• As it is the graph would be too optimistic!
• The graph also records conflicts between actions or

conditions: two operations or conditions are mutually
exclusive (mutex) if no valid plan can contain both at
the same time

• A bit more formally:
o Two operations are mutex if their preconditions or

postconditions are mutex (inconsistent effects,
competing needs, interference)

o Two conditions are mutex if one is the negation of the
other, or all action pairs that achieve them are mutex
(inconsistent support)

11

15781 Fall 2016: Lecture 7

A RUNNING EXAMPLE

• “Have cake and eat cake too” problem

12

15781 Fall 2016: Lecture 7

A RUNNING EXAMPLE

13

• Only Eat(Cake) is
applicable

15781 Fall 2016: Lecture 7

A RUNNING EXAMPLE

14

15781 Fall 2016: Lecture 7

MUTEX CASES
• Inconsistent postconditions (two

ops): one operation negates the
effect of the other; Eat(Cake)
and no-op Have(Cake)

• Interference (two ops): a
postcondition of one operation
negates a precondition of other;
Eat(Cake) and no-op
Have(Cake) (issue in parallel
execution, the order should not
matter but here it would)

15

Inconsistent Postconditions

B

¬ B

Interference

B

¬ B

15781 Fall 2016: Lecture 7

A RUNNING EXAMPLE

16

Inconsistent
postconditions

Negation of
each other

Interference

Interference
Inconsistent post

15781 Fall 2016: Lecture 7

MUTEX CASES
• Competing needs (two ops): a

precondition of one operation is mutex
with a precondition of the other because
they are the negate of each other, like for
Bake(Cake) and Eat(Cake), or because
they have inconsistent support

• Inconsistent support (two conditions):
each possible pair of operations that
achieve the two conditions is mutex,
Have(Cake) and Eaten(Cake), are mutex
in S1 but not in S2 because they can be
achieved by Bake(Cake) and Eaten(Cake)

17

Inconsistent Support

Competing Needs

B

¬ B

B

C

15781 Fall 2016: Lecture 7

A RUNNING EXAMPLE

18

Inconsistent support Competing
needs

15781 Fall 2016: Lecture 7

DINNER DATE EXAMPLE

19Slide based on Brafman

What’s up
with the Wrap
precondition?

• Initial state:
garbage ∧ cleanHands ∧ quiet

• Goals: dinner ∧ present
∧ ¬garbage

• Actions:
o Cook: cleanHands ⇒ dinner
o Wrap: quiet ⇒ present
o Carry: none ⇒ ¬garbage ∧ ¬cleanHands
o Dolly: none ⇒ ¬garbage ∧ ¬quiet

15781 Fall 2016: Lecture 7

DINNER DATE EXAMPLE*

20

cleanHands

Carry

garb garb

quiet

¬garb

cleanHands

¬cleanHands

quiet

¬quiet

dinner

present

Dolly

Cook

Wrap

No-Op

No-Op

No-Op

Inconsistent
support

Interference

* Slide based on Brafman

15781 Fall 2016: Lecture 7

DINNER DATE EXAMPLE*

21

garb

quiet No-Op

No-Op

No-Op

garb

¬garb

cleanHands

¬cleanHands

quiet

¬quiet

dinner

present

No-Op

garb

¬garb

cleanHands

¬cleanHands

quiet

¬quiet

dinner

present

No-Op

No-Op

No-Op

No-Op

No-Op

No-Op

No-Op

cleanHands

Slide based on Brafman

Carry

Dolly

Cook

Wrap

Carry

Dolly

Cook

Wrap

15781 Fall 2016: Lecture 7

A CONSTRUCTIVE PROCESS WITH NO
CHOICES INVOLVED

• The process of constructing the planning graph does
not require to choose among the actions

• → No combinatorial search is involved!
• At each O level, identify applicable actions,

including the persistence ones
• At each S level identify all conditions that could

result from the actions at the previous level
• Check for mutexes and add mutex link relations
• Check for level-off

22

15781 Fall 2016: Lecture 7

#MUTEXES MONOTONICALLY DECREASE

• Intuitive proof:
o If two operations or conditions are a mutex at a

given level, they will be also mutex for all previous
levels (because of less conditions or actions to use to
possibly avoid their conflicts)

o At each level we should also think of all operations
that cannot be executed and all actions that do not
hold: these are in mutex with everything

o By adding them over time the total # of mutexs
decreases

23

15781 Fall 2016: Lecture 7

CONDITION MUTEX RELATIONSHIPS
MONOTONICALLY DECREASE

24

O1

p

¬r No-Op

No-Op

No-Op

p

¬q

¬r

¬q

Slide based on Brafman

#Conditions mutex
(new operations appear that can resolve inconsistent support
conflicts)

15781 Fall 2016: Lecture 7

OPERATION MUTEXES
MONOTONICALLY DECREASE

• Proof idea:
o Different behavior for the different types of mutexes

o Inconsistent postconditions and interference mutex are
properties of the operations themselves ⇒ hold at every level

o Competing needs depend on conditions at level Si: if two
conditions are mutex because they are the negation of each
other, then the mutex will hold at every level and so for the
operations. Instead, if the conditions are mutex because of
inconsistent support, by induction the monotonic increasing
in #operations monotonically implies decrease in #mutexes

25

15781 Fall 2016: Lecture 7

LEVELING OFF

• As a corollary of the previous properties,
we see that the planning graph levels off
o Consecutive levels become identical

• Proof:
o Limit in the # of construction steps
o Upper bound on #operations and

#conditions based on problem definition
o Lower bound of 0 on #mutexes ∎

26

15781 Fall 2016: Lecture 7

PLANNING GRAPH COMPLEXITY
• The graph is polynomial in the size of the planning

problem P(L,A)

o Each Si has at most L nodes and L2 mutex links

o Each Oi has at most A+L nodes, (A+L)2 mutex
links, and 2(AL+L) pre- and post-condition links

o A graph with n levels has a size of O(n(A+L)2)

o The time to build the graph has the same
complexity

27

15781 Fall 2016: Lecture 7

PLANNING GRAPH ≅ RELAXED PROBLEM
• The relaxed problem provides an optimistic estimate of the

number of steps to reach each sub-goal 𝑔𝑖 → Heuristics!

• Level cost of sub-goal (literal) 𝑔𝑖 = level where 𝑔𝑖 first
appears

• Level cost is an admissible heuristic estimate but can be
quite bad because level ≠ number of actions

• If any sub-goals 𝑔𝑖	fail to appear in the final level of the
graph ⇒ The problem is unsolvable (∞ LB)

• If all sub-goals appear → “Possibly” there is a plan that
achieves g, conditional that no mutexes exist

28

15781 Fall 2016: Lecture 7

HEURISTICS FROM PLANNING GRAPHS

• To estimate the cost of a conjunction of sub-goals:
o Max level: max level cost of any goal (clearly admissible)
o Level sum: sum of level costs for all goals
o Set level: level at which all sub-goals appear without any

pair of them being mutex
• Poll 3: Which is admissible:

1. Level sum
2. Set level
3. Both
4. Neither

29

15781 Fall 2016: Lecture 7

THE GRAPHPLAN ALGORITHM

1. Grow the planning graph until all sub-goals are
reachable (appear as conditions) and not mutex
(If planning graph levels off first, fail)

2. Call EXTRACT-SOLUTION on current planning graph

3. If none found, EXPAND-GRAPH by adding a level to
the planning graph and try again

30

15781 Fall 2016: Lecture 7

THE GRAPHPLAN ALGORITHM

31

15781 Fall 2016: Lecture 7

EXTRACT-SOLUTION
• Backward search where each state corresponds to an S

level of the planning graph and a set of unsatisfied goals
• Initial state is the last level of the planning graph, along

with the goals of the planning problem
• Actions available at level 𝑆% are to select any conflict-free

subset of operations in 𝐴%&' whose effects cover the goals
in the state

• Resulting state has level 𝑆%&' and its goals are the
preconditions for selected actions

• Goal is to reach a state at level 𝑆0

32

15781 Fall 2016: Lecture 7

FLAT TIRE PROBLEM

33

15781 Fall 2016: Lecture 7

BACKWARD SEARCH

34

S0 A1 S2
At(Spare,Trunk)

At(Spare,Trunk)

At(Flat,Axle)
At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)
At(Flat,Ground)
At(Spare,Ground)
At(Spare,Ground)

At(Spare,Trunk)

At(Spare,Trunk)

At(Flat,Axle)
At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)
At(Flat,Ground)
At(Spare,Ground)
At(Spare,Ground)

At(Spare,Axle)

At(Spare,Trunk)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Spare,Ground)

PutOn(Spare,Axle)

LeaveOvernight

Remove(Flat,Axle)

Remove(Spare,Trunk)

Remove(Spare,Trunk)

Remove(Flat,Axle)

LeaveOvernight

¬

¬

¬

¬

¬

¬

¬

¬

¬

¬

¬

¬

¬

A0 S1

goals
actions
states (conditions)

15781 Fall 2016: Lecture 7

BACKWARD SEARCH, STEPS EXPLAINED

35

• Starting from S0, that does not include the goal’s literals, EXPAND-GRAPH
is called twice. The literals from the goal are then present in the S2, and
EXPAND-SOLUTION is called

• Backward search starts at state S2 with goal At(Spare, Axle)
• The only action choice for achieving the goal is PutOn(Spare, Axle)
• The regression brings to a search state S1 with goals At(Spare,Ground),

¬At(Flat,Axle)
• At(Spare,Ground) can only be achieved by Remove(Spare,Trunk)
• At(Flat,Axle) achieved either by Remove(Flat,Axle) or LeaveOvernight()
• LeaveOvernight() is mutex with Remove(Spare, Trunk) → choose

Remove(Spare, Trunk) and Remove(Flat, Axle)
• New search state at S0 with the goals At(Spare,Trunk), At(Flat,Axle), that

are both in the initial conditions → Solution found!
• Plan: Remove(Spare, Trunk) and Remove(Flat, Axle) in level A0,

PutOn(Spare, Axle) in A1.

15781 Fall 2016: Lecture 7

HEURISTICS FOR BACKWARD SEARCH

• How to choose among the actions?
• One approach: Greedy, based on the level cost of the

literals in the set of sub-goals
o Pick first the sub-goal with the highest level cost
o Prefer actions with easier preconditions to

achieve the selected sub-goal
o Easier preconditions = Sum (or max) of the level

costs of its preconditions is smallest

36

15781 Fall 2016: Lecture 7

GRAPHPLAN GUARANTEES

• Observation: The size of the 𝑡-level
planning graph and the time to create it
are polynomial in 𝑡, #operations,
#conditions

• Theorem: GRAPHPLAN returns a plan if
one exists, and returns failure if one does
not exists

37

15781 Fall 2016: Lecture 7

SUMMARY
• Terminology:

o Planning graphs
o Set level heuristic

• Algorithms:
o GRAPHPLAN

o FORWARD, BACKWARD SEARCH

• Big ideas:
o Planning is search, but admits

domain-independent heuristics

38

