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PLANNING GRAPHS

• Graph-based data structure representing a 
polynomial-size/time approximation of the 
exponential search tree

• Can be used to automatically produce good 
heuristic estimates (e.g., for A*)

• Can be used to search for a solution using the 
GRAPHPLAN algorithm

2



15781 Fall 2016: Lecture 7

PLANNING GRAPHS

• Leveled graph: vertices organized into 
levels/stages, with edges only between levels

• Two types of vertices on alternating levels:
o Conditions
o Operations

• Two types of edges:
o Precondition: from condition to operation
o Postcondition: from operation to condition
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GENERIC PLANNING GRAPH
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Condition

• 𝑆0 contains all the conditions that hold in initial state
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GENERIC PLANNING GRAPH
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Condition

Precondition

•Add operation to level 𝑂𝑖 if its preconditions appear in level 𝑆𝑖

Level O0Level S0
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GENERIC PLANNING GRAPH
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Condition
No-Op

(Persistent action)

Level S1Precondition

• Add condition to level 𝑆𝑖 if it is the 
postcondition of an operation (it is in 
ADD or DELETE lists) in level 𝑂%&'

• Keep a previous condition of no action 
negates it (persistence, no-op action)



15781 Fall 2016: Lecture 7

CONDITIONS MONOTONICALLY INCREASE
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Slide based on Brafman
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GENERIC PLANNING GRAPH
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…
…

…

Condition

Operation

No-Op
(Persistent action)

Precondition
Postcondition

Level O2Level S2

• Repeat …
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GENERIC PLANNING GRAPH
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…
…

…

• → The level j at which a condition first appears is a (good) estimate 
of how difficult is to achieve that condition

• → Can optimistically estimate how many steps it takes to reach a 
goal g (or sub-goal gi) from the initial state

Idea: 𝑆𝑖 contains all conditions that 
could hold at stage 𝑖 based on past 
actions; 𝑂𝑖 contains all operations 
that could have their preconditions 
satisfied at time 𝑖
No ordering among the operations 
is assumed at each stage, they 
could be executed in parallel
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OPERATIONS MONOTONICALLY INCREASE
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MUTUAL EXCLUSION LINKS
• As it is the graph would be too optimistic!
• The graph also records conflicts between actions or 

conditions: two operations or conditions are mutually 
exclusive (mutex) if no valid plan can contain both at 
the same time

• A bit more formally:
o Two operations are mutex if their preconditions or 

postconditions are mutex (inconsistent effects, 
competing needs, interference)

o Two conditions are mutex if one is the negation of the 
other, or all action pairs that achieve them are mutex
(inconsistent support)
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A RUNNING EXAMPLE

• “Have cake and eat cake too” problem
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A RUNNING EXAMPLE
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• Only Eat(Cake) is 
applicable
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A RUNNING EXAMPLE
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MUTEX CASES
• Inconsistent postconditions (two 

ops): one operation negates the 
effect of the other; Eat(Cake)
and no-op Have(Cake)

• Interference (two ops): a 
postcondition of one operation 
negates a precondition of other; 
Eat(Cake) and no-op 
Have(Cake) (issue in parallel 
execution, the order should not 
matter but here it would)
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Inconsistent Postconditions

B

¬ B

Interference

B

¬ B
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A RUNNING EXAMPLE
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Inconsistent
postconditions

Negation of 
each other

Interference

Interference
Inconsistent post
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MUTEX CASES
• Competing needs (two ops): a 

precondition of one operation is mutex
with a precondition of the other because 
they are the negate of each other, like for 
Bake(Cake) and Eat(Cake), or because 
they have inconsistent support

• Inconsistent support (two conditions): 
each possible pair of operations that 
achieve the two conditions is mutex, 
Have(Cake) and Eaten(Cake), are mutex
in S1 but not in S2 because they can be 
achieved by Bake(Cake) and Eaten(Cake)
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Inconsistent Support

Competing Needs

B

¬ B

B

C
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A RUNNING EXAMPLE
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Inconsistent support Competing
needs
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DINNER DATE EXAMPLE
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What’s up 
with the Wrap 
precondition?

• Initial state: 
garbage ∧ cleanHands ∧ quiet

• Goals: dinner ∧ present 
∧ ¬garbage

• Actions:
o Cook: cleanHands ⇒ dinner
o Wrap: quiet ⇒ present
o Carry: none ⇒ ¬garbage ∧ ¬cleanHands
o Dolly: none ⇒ ¬garbage ∧ ¬quiet
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DINNER DATE EXAMPLE*
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* Slide based on Brafman
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DINNER DATE EXAMPLE*
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A CONSTRUCTIVE PROCESS WITH NO
CHOICES INVOLVED

• The process of constructing the planning graph does 
not require to choose among the actions

• → No combinatorial search is involved!
• At each O level, identify applicable actions, 

including the persistence ones
• At each S level identify all conditions that could 

result from the actions at the previous level
• Check for mutexes and add mutex link relations
• Check for level-off
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#MUTEXES MONOTONICALLY DECREASE

• Intuitive proof:
o If two operations or conditions are a mutex at a 

given level, they will be also mutex for all previous 
levels (because of less conditions or actions to use to 
possibly avoid their conflicts)

o At each level we should also think of all operations 
that cannot be executed and all actions that do not 
hold: these are in mutex with everything

o By adding them over time the total  # of mutexs
decreases 
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CONDITION MUTEX RELATIONSHIPS
MONOTONICALLY DECREASE
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#Conditions mutex
(new operations appear that can resolve inconsistent support 
conflicts)
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OPERATION MUTEXES
MONOTONICALLY DECREASE

• Proof idea:
o Different behavior for the different types of mutexes

o Inconsistent postconditions and interference mutex are 
properties of the operations themselves ⇒ hold at every level

o Competing needs depend on conditions at level Si: if two 
conditions are mutex because they are the negation of each 
other, then the mutex will hold at every level and so for the 
operations. Instead, if the conditions are mutex because of 
inconsistent support, by induction the monotonic increasing 
in #operations monotonically implies decrease in #mutexes
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LEVELING OFF

• As a corollary of the previous properties, 
we see that the planning graph levels off
o Consecutive levels become identical

• Proof: 
o Limit in the # of construction steps
o Upper bound on #operations and 

#conditions based on problem definition
o Lower bound of 0 on #mutexes ∎
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PLANNING GRAPH COMPLEXITY
• The graph is polynomial in the size of the planning 

problem P(L,A)

o Each Si has at most L nodes and L2 mutex links

o Each Oi has at most A+L nodes, (A+L)2 mutex
links, and 2(AL+L) pre- and post-condition links

o A graph with n levels has a size of O(n(A+L)2) 

o The time to build the graph has the same 
complexity
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PLANNING GRAPH ≅ RELAXED PROBLEM
• The relaxed problem provides an optimistic estimate of the 

number of steps to reach each sub-goal 𝑔𝑖 → Heuristics!

• Level cost of sub-goal (literal) 𝑔𝑖 = level where 𝑔𝑖 first 
appears

• Level cost is an admissible heuristic estimate but can be 
quite bad because level ≠ number of actions

• If any sub-goals 𝑔𝑖	fail to appear in the final level of the 
graph ⇒ The problem is unsolvable (∞ LB)

• If all sub-goals appear → “Possibly” there is a plan that 
achieves g, conditional that no mutexes exist
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HEURISTICS FROM PLANNING GRAPHS

• To estimate the cost of a conjunction of sub-goals:
o Max level: max level cost of any goal (clearly admissible)
o Level sum: sum of level costs for all goals 
o Set level: level at which all sub-goals appear without any 

pair of them being mutex
• Poll 3: Which is admissible:

1. Level sum
2. Set level
3. Both 
4. Neither
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THE GRAPHPLAN ALGORITHM

1. Grow the planning graph until all sub-goals are 
reachable (appear as conditions) and not mutex
(If planning graph levels off first, fail)

2. Call EXTRACT-SOLUTION on current planning graph

3. If none found, EXPAND-GRAPH by adding a level to 
the planning graph and try again
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THE GRAPHPLAN ALGORITHM
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EXTRACT-SOLUTION
• Backward search where each state corresponds to an S

level of the planning graph and a set of unsatisfied goals
• Initial state is the last level of the planning graph, along 

with the goals of the planning problem
• Actions available at level 𝑆% are to select any conflict-free 

subset of operations in 𝐴%&' whose effects cover the goals 
in the state

• Resulting state has level 𝑆%&' and its goals are the 
preconditions for selected actions

• Goal is to reach a state at level 𝑆0
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FLAT TIRE PROBLEM
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BACKWARD SEARCH
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BACKWARD SEARCH, STEPS EXPLAINED
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• Starting from S0, that does not include the goal’s literals, EXPAND-GRAPH
is called twice. The literals from the goal are then present in the S2, and 
EXPAND-SOLUTION is called

• Backward search starts at state S2 with goal    At(Spare, Axle)
• The only action choice for achieving the goal is PutOn(Spare, Axle) 
• The regression brings to a search state S1 with goals At(Spare,Ground), 

¬At(Flat,Axle) 
• At(Spare,Ground) can only be achieved by Remove(Spare,Trunk)
• At(Flat,Axle) achieved either by Remove(Flat,Axle) or LeaveOvernight()
• LeaveOvernight() is mutex with Remove(Spare, Trunk) → choose

Remove(Spare, Trunk) and Remove(Flat, Axle)
• New search state at S0 with the goals At(Spare,Trunk), At(Flat,Axle), that 

are both in the initial conditions → Solution found!
• Plan: Remove(Spare, Trunk) and Remove(Flat, Axle) in level A0, 

PutOn(Spare, Axle) in A1.
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HEURISTICS FOR BACKWARD SEARCH

• How to choose among the actions?
• One approach: Greedy, based on the level cost of the 

literals in the set of sub-goals
o Pick first the sub-goal with the highest level cost
o Prefer actions with easier preconditions to 

achieve the selected sub-goal
o Easier preconditions = Sum (or max) of the level 

costs of its preconditions is smallest
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GRAPHPLAN GUARANTEES

• Observation: The size of the 𝑡-level 
planning graph and the time to create it 
are polynomial in 𝑡, #operations, 
#conditions

• Theorem: GRAPHPLAN returns a plan if 
one exists, and returns failure if one does 
not exists
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SUMMARY
• Terminology:

o Planning graphs
o Set level heuristic

• Algorithms:
o GRAPHPLAN

o FORWARD, BACKWARD SEARCH

• Big ideas:
o Planning is search, but admits 

domain-independent heuristics
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