CMU 15-781

 Lecture 6: Planning IITeacher:
Gianni A. Di Caro

RECAP: CLASSICAL PLANNING

- Factored representation: A state of the world is represented by a collection of variables \rightarrow Exploit structure, sub-goaling / divide-and-conquer, domainindependent heuristics
- PDDL / STRIPS: Language expressive enough to describe a wide variety of problems, but restrictive enough to allow efficient algorithms to operate over it
- State: Conjunction of literals

Recap: Classical Planning

- State: Conjunction of literals
- Propositional literals: Poor \wedge Unknown
- Ground first order literals: $\operatorname{At}\left(\mathrm{Plane}_{1}\right.$, Rome $) \wedge \operatorname{At}\left(\mathrm{Plane}_{2}\right.$, Tokyo $)$ At $(x$, Rome $) \wedge$ At $(y$, Tokyo $)$
- Function-free: At(Father(Tom), NY) $\rightarrow \operatorname{At}($ Alex, NY) \wedge Father(Alex, Tom)
- Closed-world assumption: Any condition which is not mentioned in the state is assumed to be false

The world is represented through a set of features/objects (e.g., planes, people, cities) and each literal states a fact that attributes "values" to features

On(A,Table)
On(B,Table)
On(C,Table)
Clear(A)
Clear(B)
Clear(C)
$\neg \mathrm{On}(\mathrm{A}, \mathrm{A})$
$\neg \operatorname{On}(A, B)$
$\neg \operatorname{On}(A, C)$
$\neg \mathrm{On}(\mathrm{B}, \mathrm{A})$
$\neg \operatorname{On}(B, B)$
$\neg \operatorname{On}(B, C)$
$\neg \operatorname{On}(\mathrm{C}, \mathrm{A})$
$\neg \operatorname{On}(C, B)$
$\neg \mathrm{On}(\mathrm{C}, \mathrm{C})$
$\neg \operatorname{On}(A, A)$
$\neg \operatorname{On}(A, B)$
$\neg \operatorname{On}(A, C)$
\neg On(Table, A)
\neg On(Table, B)
\neg On(Table, C)
\neg On(Table,Table)
\neg Clear(Table)

Recap: Classical Planning

- Goals: A conjunction of literals, $\operatorname{At}\left(\mathrm{P}_{1}, \mathrm{JFK}\right) \wedge \operatorname{At}\left(\mathrm{P}_{2}, \mathrm{SFO}\right)$, that may also contain variables, such as At $(\mathrm{p}, \mathrm{JFK}) \wedge$ Plane (p), meaning that the goal is to have any plane at JFK
- The aim is to reach a state that entails a goal: OnTable(A) \wedge OnTable $(\mathrm{B}) \wedge$ OnTable $(\mathrm{D}) \wedge \operatorname{On}(\mathrm{C}, \mathrm{D}) \wedge \operatorname{Clear}(\mathrm{A}) \wedge$ Clear $(\mathrm{B}) \wedge$ Clear (C) satisfies the goal to stack C on D
- \rightarrow A goal g is a conjunction of sub-goals! $\mathrm{g}=\mathrm{g}_{1} \wedge \mathrm{~g}_{2} \wedge \ldots \wedge \mathrm{~g}_{\mathrm{n}}$
- Goals are reached through sequence of actions (the plan)

RECAP: CLASSICAL PLANNING

- Actions: Preconditions + Effects (Postconditions)
- Action schema: a number of different actions that can be derived by universal quantification of the variables, e.g., an action schema to fly a plane from one location to another:

Action (Fly(p, from, to), PRECOND: $\operatorname{At}(p$, from $) \wedge \operatorname{Plane}(p) \wedge \operatorname{Airport}($ from $) \wedge \operatorname{Airport}(t o)$ EFFECT: $\neg A t(p$, from $) \wedge A t(p, t o))$

- An action is applicable in state s if s entails the preconditions
- The literals negated by the effect of a are removed from s, while the positive literals resulting from a are added to s

Recap: Classical Planning

- $\operatorname{RESULT}(s, a)=(s-\operatorname{DELETE}(a)) \cup \operatorname{ADD}(a)$
- Action schema:
$\operatorname{Action}\left(\operatorname{Name}\left(p_{1,}, p_{2, \ldots .}, p_{n}\right)\right.$,
PRECONDITIONS: $L_{1}(p) \wedge L_{2}(p) \wedge \ldots \wedge L_{\mathrm{m}}(p)$
ADD-LIST: $\left\{A_{1}(p), A_{2}(p), \ldots, A_{\mathrm{q}}(p)\right\}$
DELETE-LIST: $\left\{L_{\mathrm{i}}(p), L_{\mathrm{j}}(p) \wedge \ldots \wedge L_{\mathrm{k}}(p)\right\}$

Recap: Classical Planning

- Planning domain: Set of Action schemas (+ Set of Predicates)
- Planning problem (instance): Planning domain + Initial state + Goal + Set of Objects (world features)
- Solution of the planning problem: A sequence of actions that, starting from the initial state, end in a state s that entails the goal

Air cargo transportation problem (from R\&N)

- Predicates: At, Cargo, Plane, Airport, In
- Objects: $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{P}_{1}, \mathrm{P}_{2}$, SFO, JFK
- Actions: Load, Unload, Fly

Carnegie Mellon University

Planning as search

- (Forward) Search from initial state to goal
- Can use standard search techniques, including heuristic search

(FORWARD) State-Space search

- In absence of function symbols, the state space of a planning problem is finite \rightarrow Any graph search algorithm that is complete will be a complete planning algorithm
- Irrelevant action problem: All applicable actions are considered at each state!
- The resulting branching factor b is typically large and the state space is exponential in $b \rightarrow$ Needs for good heuristics!

At home \rightarrow
get milk, bananas and a cordless drill
\rightarrow return home

(FORWARD) State-Space SEARCH

- Air Cargo Example
- Initial state: 10 airports, each airport has 5 planes and 20 pieces of cargo
- Goal: transport all the cargos at airport A to airport B
- Solution: load the 20 pieces of cargo at A into one of the planes at A and fly it to B
- Avg Branching factor b : each of the 50 planes can fly to 9 other airports, and each of the 200 packages can be either unloaded (if it is loaded), or loaded into any plane at its airport (if it is unloaded)
- Number of states to explore: $O\left(b^{d}\right) \sim 2000^{41}$

Find A HEuristic: RELAX THE PROBLEM

- Define a Relaxed problem:
- (Potentially) Easy to solve
- The solution gives admissible heuristics for A*
- Relaxation: Remove all preconditions from actions
- \rightarrow Every action will always be applicable, and any literal (sub-goal) can be achieved in one step
- \rightarrow Adding edges to the graph: including forbidden actions
- $\rightarrow h(x)=$ The number of steps required to get to the goal is the number of unsatisfied goals from current state x ?

Domain-Independent Heuristic

- $h(x)=$ The number of steps required to solve a conjunction of goals is the number of unsatisfied goals from current state x ?
- Impossible to derive such a heuristic with atomic states! The successor function is a black box, here we exploit the structure of the representation
- The heuristic is domain-independent!
- With atomic states, in general only domain-specific heuristics are possible

Heuristic: IGNORE PRECONDITIONS

- Complications, that could made the heuristic function $h(x)$ not admissible:
a. Some operations achieve multiple goals
b. Some operations undo the effects of others
- Poll 1: To get an admissible heuristic, ignore preconditions and, in addition ignore:

1. Just a
(2.) Just b
2. Both a and b

Ignore preconditions \& Non-Goal Effects

- To avoid b. remove all the effects of actions, except those that are literals $g_{i,} i=1, \ldots, n$, in the goal g (i.e., subgoals) \rightarrow Exploit factored structure
- $h(x)=$ the min number of actions such that the union of their effects contains all n sub-goals $g_{i} \rightarrow$ Admissible
- Computing $h(x)=$ solving a SET Cover problem: NP-hard!
- Greedy $\log n$ approximation:

Ignore (Specific) preconditions

- Ignore specific preconditions to derive domain-specific heuristics
- Sliding block puzzle, move $\left(t, s_{1}, s_{2}\right)$ action:
- $\operatorname{On}\left(t, s_{1}\right) \wedge \operatorname{Blank}\left(s_{2}\right) \wedge \operatorname{Adjacent}\left(s_{1}, s_{2}\right) \Rightarrow$ $\operatorname{On}\left(t, s_{2}\right) \wedge \operatorname{Blank}\left(s_{1}\right) \wedge \neg \operatorname{On}\left(t, s_{1}\right) \wedge \neg \operatorname{Blank}\left(s_{2}\right)$
- Consider two options for removing specific preconditions from move()
a. Removing $\operatorname{Blank}\left(s_{2}\right) \wedge \operatorname{Adjacent}\left(s_{1}, s_{2}\right)$
b. Removing $\operatorname{Blank}\left(s_{2}\right)$
- Poll 2: Match option to heuristic:

1. $\mathrm{a} \leftrightarrow \sum$ Manhattan, $\mathrm{b} \leftrightarrow \#$ misplaced tiles
2. $\mathrm{a} \leftrightarrow \#$ misplaced tiles, $\mathrm{b} \leftrightarrow \sum$ Manhattan
3. $\mathrm{b} \leftrightarrow \#$ misplaced tiles, a is inadmissible $\mathrm{b} \leftrightarrow \sum$ Manhattan, a is inadmissible

Example state

Goal state

Backward State-space search

- Searching from a goal state to the initial state (regression)
- We only need to consider actions that are relevant to the goal (or current state) \rightarrow Relevant-state search
- This can makes a strong reduction in branching factor, such that it could be more efficient than forward (progression) search
- "Imagine trying to figure out how to get to some small place with few traffic connections from somewhere with a lot of traffic connections"

Backward State-space search

- Regression from a (goal) state g over the action a gives state g '
- $g^{\prime}=(g-\operatorname{ADD}(a)) \cup \operatorname{Preconditions}(a)$
- DEL(a) doesn't appear: we don't know whether the literals negated by $\operatorname{DEL}(a)$ were true or not before a, therefore nothing can be said about them
- Variables can be included, such that a set of states is defined:
- Goal $\operatorname{At}\left(\mathrm{C}_{2}, \mathrm{SFO}\right) \rightarrow \operatorname{Unload}\left(\mathrm{C}_{2}, \mathrm{p}, \mathrm{SFO}\right) \rightarrow \mathrm{g}^{\prime}=\operatorname{In}\left(\mathrm{C}_{2}, \mathrm{p}\right) \wedge \operatorname{At}(\mathrm{p}$, $\mathrm{SFO}) \wedge \operatorname{Cargo}\left(\mathrm{C}_{2}\right) \quad \wedge \operatorname{Plane}(\mathrm{p}) \wedge \operatorname{Airport}(\mathrm{SFO})$

Backward State-Space search

- How to select actions?
- Relevant actions only
- Have an effect which is in the set of (current) goal literals

Goal: $\operatorname{At}\left(\mathrm{C}_{1}, \mathrm{JFK}\right) \wedge \operatorname{At}\left(\mathrm{C}_{2}, \mathrm{SFO}\right) \rightarrow \operatorname{Unload}\left(\mathrm{C}_{2}, \mathrm{p}, \mathrm{SFO}\right)$ is relevant, $\mathrm{Fly}(\mathrm{p}, \mathrm{JFK}, \mathrm{SFO})$ is not relevant

- Consistent actions only
- Have no effect which negates an element of the goal

Goal: $\mathrm{A} \wedge \mathrm{B} \wedge \mathrm{C}$, action a with effect $\mathrm{A} \wedge \mathrm{B} \wedge \neg \mathrm{C}$ is not relevant

PLANNING GRAPHS

- Graph-based data structure representing a polynomial-size/time approximation of the exponential search tree
- Can be used to automatically produce good heuristic estimates (e.g., for A*)
- Can be used to search for a solution using the GRAPHPLAN algorithm

PLANNING GRAPHS

- Leveled graph: vertices organized into levels/stages, with edges only between levels
- Two types of vertices on alternating levels:
- Conditions
- Operations
- Two types of edges:
- Precondition: from condition to operation
- Postcondition: from operation to condition

GENERIC PLANNING GRAPH*

PLANNING GRAPH CONSTRUCTION

- S_{0} contains all the conditions that hold in initial state
- Add operation to level O_{i} if its preconditions appear in level S_{i}
- Add condition to level S_{i} if it is the effect of an operation in level O_{i-1} (no-op action also possible)
- Idea: S_{i} contains all conditions that could hold at stage $i ; O_{i}$ contains all operations that could have their preconditions satisfied at time i
- Can optimistically estimate how many steps it takes to reach a goal: it includes all possible operations and preconditions that could hold, multiple actions could be executed (in parallel) at each stage (time step)

Mutual exclusion Links

- The graph also records conflicts between actions or conditions: two operations or conditions are mutually exclusive (mutex) if no valid plan can contain both at the same time
- A bit more formally:
- Two operations are mutex if their preconditions or postconditions are mutex
- Two conditions are mutex if one is the negation of the other, or all actions that achieve them are mutex
- Even more formally...

A RUNNING EXAMPLE

- "Have cake and eat cake too" problem

Initial state: Have(Cake)
Goal: Have $($ Cake $) \wedge$ Eaten(Cake)
Eat(Cake):
Precond: Have(Cake)
Effect: $\quad \neg$ Have $($ Cake $) \wedge$ Eaten $($ Cake $)$
Bake(Cake):

$$
\begin{array}{ll}
\text { Precond: } & \neg \text { Have }(\text { Cake }) \\
\text { Effect: } & \text { Have }(\text { Cake })
\end{array}
$$

A RUNNING EXAMPLE

A RUNNING EXAMPLE

Initial state: Have(Cake)

Goal: Have $($ Cake $) \wedge$ Eaten $($ Cake $)$
Eat(Cake):
Precond:
Effect:
Have(Cake)
\neg Have $($ Cake $) \wedge$ Eaten $($ Cake $)$
$\mathrm{S}_{0} \quad \mathrm{~A}_{0}$
S_{1}

Bake(Cake):
Precond:
Effect:
\neg Have (Cake)
Have(Cake)

15781 Fall 2016: Lecture 6
Carnegie Mellon University 26

Mutex cases*

- Inconsistent postconditions (two ops): one operation negates the effect of the other, Eat(Cake) and no-op Have(Cake)
- Interference (two ops): a postcondition of one operation negates a precondition of other, Eat(Cake) and no-op Have(Cake) (issue in parallel execution, the order should not matter but here it would)

Inconsistent Postconditions

Mutex cases*

- Competing needs (two ops): a precondition of one operation is mutex with a precondition of the other, Bake(Cake) and Eat(Cake)

Competing Needs

Inconsistent Support

A RUNNING EXAMPLE

Initial state: Have(Cake)

A RUNNING EXAMPLE

Initial state: Have(Cake)

Planning Graphs

To be continued ...

15781 Fall 2016: Lecture 6

