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RECAP: CLASSICAL PLANNING

• Factored representation: A state of the world is 
represented by a collection of variables → Exploit 
structure, sub-goaling / divide-and-conquer, domain-
independent heuristics

• PDDL / STRIPS: Language expressive enough to 
describe a wide variety of problems, but restrictive 
enough to allow efficient algorithms to operate over it

• State: Conjunction of literals
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RECAP: CLASSICAL PLANNING
• State: Conjunction of literals

o Propositional literals: Poor ∧ Unknown
o Ground first order literals: At(Plane1, Rome) ∧ At(Plane2, Tokyo) 

At(x, Rome) ∧ At(y, Tokyo) 
o Function-free: At(Father(Tom), NY)
→ At(Alex, NY) ∧ Father(Alex, Tom) 

o Closed-world assumption: Any condition which is not          
mentioned in the state is assumed to be false 
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The world is represented 
through a set of features/objects
(e.g., planes, people, cities) and 
each literal states a fact that 
attributes “values” to features 
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RECAP: CLASSICAL PLANNING

• Goals: A conjunction of literals, At(P1, JFK) ∧ At(P2, SFO),
that may also contain variables, such as At(p, JFK) ∧Plane(p),
meaning that the goal is to have any plane at JFK

• The aim is to reach a state that entails a goal: OnTable(A) ∧
OnTable(B) ∧ OnTable(D)∧ On(C, D) ∧ Clear(A) ∧
Clear(B) ∧ Clear(C) satisfies the goal to stack C on D

• → A goal g is a conjunction of sub-goals!                    
g = g1 ∧ g2∧… ∧ gn

• Goals are reached through sequence of actions (the plan)
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RECAP: CLASSICAL PLANNING
• Actions: Preconditions + Effects (Postconditions)
• Action schema: a number of different actions that can be derived by 

universal quantification of the variables, e.g., an action schema to fly a 
plane from one location to another:

Action(Fly(p, from, to),
PRECOND: At(p, from) ∧ Plane(p) ∧ Airport(from) ∧ Airport(to)
EFFECT: ¬At(p, from) ∧ At(p, to))

• An action is applicable in state s if s entails the preconditions
• The literals negated by the effect of a are removed from s, while the 

positive literals resulting from a are added to s 
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RECAP: CLASSICAL PLANNING

• RESULT(s,a) = (s – DELETE(a)) ∪ ADD(a)

• Action schema: 
Action(Name(p1, p2,…., pn),

PRECONDITIONS: L1(p) ∧ L2 (p) ∧ … ∧ Lm(p)
ADD-LIST: {A1(p), A2(p), …., Aq (p)}
DELETE-LIST: {Li(p), Lj(p) ∧ … ∧ Lk(p)}
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RECAP: CLASSICAL PLANNING

• Planning domain: Set of Action schemas (+ Set of Predicates) 
• Planning problem (instance): Planning domain + Initial state + 

Goal + Set of Objects (world features)
• Solution of the planning problem: A sequence of actions that, 

starting from the initial state, end in a state s that entails the goal
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Air cargo transportation 
problem (from R&N)
• Predicates: At, Cargo, 

Plane, Airport, In
• Objects: C1, C2, P1, P2, 

SFO, JFK 
• Actions: Load, Unload, 

Fly
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PLANNING AS SEARCH

• (Forward) Search from initial state to goal
• Can use standard search techniques, 

including heuristic search 
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At(P1,A)
At(P2,A)

At(P1,B)
At(P2,A)

At(P1,A)
At(P2,B)

Fly(P1,A,B)

Fly(P2,A,B)
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(FORWARD) STATE-SPACE SEARCH
• In absence of function symbols, the state space of a planning 

problem is finite → Any graph search algorithm that is 
complete will be a complete planning algorithm

• Irrelevant action problem: All applicable actions are considered 
at each state!

• The resulting branching factor b is typically large and the state 
space is exponential in b → Needs for good heuristics!
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At home → 
get milk, bananas and a cordless drill 
→ return home 
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(FORWARD) STATE-SPACE SEARCH
• Air Cargo Example
• Initial state: 10 airports, each airport has 5 planes and 20 

pieces of cargo
• Goal: transport all the cargos at airport A to airport B
• Solution: load the 20 pieces of cargo at A into one of the 

planes at A and fly it to B
• Avg Branching factor b: each of the 50 planes can fly to 9 

other airports, and each of the 200 packages can be either 
unloaded (if it is loaded), or loaded into any plane at its 
airport (if it is unloaded) 

• Number of states to explore: O(bd) ∼ 200041
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FIND A HEURISTIC: 
RELAX THE PROBLEM

• Define a Relaxed problem:
o (Potentially) Easy to solve
o The solution gives admissible heuristics for A* 

• Relaxation: Remove all preconditions from actions
• → Every action will always be applicable, and any literal 

(sub-goal) can be achieved in one step 
• → Adding edges to the graph: including forbidden actions

• → h(x) = The number of steps required to get to the goal 
is the number of unsatisfied goals from current state x?
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DOMAIN-INDEPENDENT HEURISTIC

• h(x) = The number of steps required to solve a conjunction of goals is 
the number of unsatisfied goals from current state x?

• Impossible to derive such a heuristic with atomic states! The 
successor function is a black box, here we exploit the structure 
of the representation

• The heuristic is domain-independent!

• With atomic states, in general only domain-specific heuristics 
are possible
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HEURISTIC: IGNORE PRECONDITIONS
• Complications, that could made the heuristic 

function h(x) not admissible:
a. Some operations achieve multiple goals
b. Some operations undo the effects of others

• Poll 1: To get an admissible heuristic, ignore 
preconditions and, in addition ignore:
1. Just a
2. Just b
3. Both a and b
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IGNORE PRECONDITIONS & 
NON-GOAL EFFECTS

• To avoid b. remove all the effects of 
actions, except those that are literals 
gi, i=1,…,n, in the goal g (i.e., sub-
goals) → Exploit factored structure

• h(x) = the min number of actions 
such that the union of their effects 
contains all n sub-goals gi →
Admissible

• Computing h(x) = solving a SET
COVER problem: NP-hard!

• Greedy log n approximation:
o Admissibility is lost!
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IGNORE (SPECIFIC) PRECONDITIONS
• Ignore specific preconditions to derive domain-specific heuristics
• Sliding block puzzle, move(t,s1,s2) action:
• On(𝑡, 𝑠1)∧Blank(𝑠2)∧Adjacent(𝑠1, 𝑠2) ⇒

On(𝑡, 𝑠2)∧Blank(𝑠1)∧¬On(𝑡, 𝑠1)∧¬Blank(𝑠2)
• Consider two options for removing specific               

preconditions from move()
a. Removing Blank(𝑠+)∧Adjacent(𝑠,, 𝑠+)
b. Removing Blank(𝑠+)

• Poll 2: Match option to heuristic: 
1. a↔ ∑Manhattan, b↔#misplaced tiles
2. a↔#misplaced tiles, b↔ ∑Manhattan
3. b↔#misplaced tiles, a is inadmissible
4. b↔ ∑Manhattan, a is inadmissible
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BACKWARD STATE-SPACE SEARCH
• Searching from a goal state to the initial state (regression)
• We only need to consider actions that are relevant to the goal (or 

current state) → Relevant-state search 
• This can makes a strong reduction in branching factor, such that it 

could be more efficient than forward (progression) search
• “Imagine trying to figure out how to get to some small place with few 

traffic connections from somewhere with a lot of traffic connections”
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BACKWARD STATE-SPACE SEARCH

• Regression from a (goal) state g over the action a gives state g’ 
o g’ = (g – ADD(a)) ∪ Preconditions(a)

• DEL(a) doesn’t appear: we don’t know whether the literals 
negated by DEL(a) were true or not before a, therefore nothing 
can be said about them

• Variables can be included, such that a set of states is defined:
o Goal At(C2, SFO) → Unload(C2, p, SFO) → g’ = In(C2,p) ∧ At(p, 

SFO) ∧ Cargo(C2)     ∧ Plane(p) ∧ Airport(SFO)
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BACKWARD STATE-SPACE SEARCH
• How to select actions?
• Relevant actions only 

o Have an effect which is in the set of (current) goal literals

Goal: At(C1, JFK) ∧ At(C2, SFO) → Unload(C2, p, SFO) is 
relevant, Fly(p, JFK, SFO) is not relevant

• Consistent actions only
o Have no effect which negates an element of the goal

Goal: A ∧ B ∧ C, action a with effect A ∧ B ∧ ¬C is not 
relevant
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PLANNING GRAPHS

• Graph-based data structure representing a 
polynomial-size/time approximation of the 
exponential search tree

• Can be used to automatically produce good 
heuristic estimates (e.g., for A*)

• Can be used to search for a solution using the 
GRAPHPLAN algorithm
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PLANNING GRAPHS

• Leveled graph: vertices organized into 
levels/stages, with edges only between levels

• Two types of vertices on alternating levels:
o Conditions
o Operations

• Two types of edges:
o Precondition: from condition to operation
o Postcondition: from operation to condition

20



15781 Fall 2016: Lecture 6

GENERIC PLANNING GRAPH*
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* Slide based on Brafman
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PLANNING GRAPH CONSTRUCTION
• 𝑆0 contains all the conditions that hold in initial state
• Add operation to level 𝑂𝑖 if its preconditions appear in level 𝑆𝑖
• Add condition to level 𝑆𝑖 if it is the effect of an operation in 

level 𝑂34, (no-op action also possible)
• Idea: 𝑆𝑖 contains all conditions that could hold at stage 𝑖; 𝑂𝑖

contains all operations that could have their preconditions 
satisfied at time 𝑖

• Can optimistically estimate how many steps it takes to reach a 
goal: it includes all possible operations and preconditions that 
could hold, multiple actions could be executed (in parallel) at 
each stage (time step)
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MUTUAL EXCLUSION LINKS

• The graph also records conflicts between actions 
or conditions: two operations or conditions are 
mutually exclusive (mutex) if no valid plan can 
contain both at the same time

• A bit more formally:
o Two operations are mutex if their preconditions or 

postconditions are mutex
o Two conditions are mutex if one is the negation of 

the other, or all actions that achieve them are mutex
• Even more formally...
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A RUNNING EXAMPLE

• “Have cake and eat cake too” problem
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A RUNNING EXAMPLE
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A RUNNING EXAMPLE
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MUTEX CASES*
• Inconsistent postconditions (two 

ops): one operation negates the 
effect of the other, Eat(Cake)
and no-op Have(Cake)

• Interference (two ops): a 
postcondition of one operation 
negates a precondition of other, 
Eat(Cake) and no-op 
Have(Cake) (issue in parallel 
execution, the order should not 
matter but here it would)

27* Slide based on Brafman

Inconsistent Postconditions

B

¬ B

Interference

B

¬ B
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MUTEX CASES*
• Competing needs (two ops): a 

precondition of one operation is 
mutex with a precondition of the 
other, Bake(Cake) and Eat(Cake)

• Inconsistent support (two 
conditions): each possible pair of 
operations that achieve the two 
conditions is mutex, Have(Cake) and 
Eaten(Cake), are mutex in S1 but not 
in S2 because they can be achieved by 
Bake(Cake) and Eaten(Cake)
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Inconsistent Support

Competing Needs

* Slide based on Brafman
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A RUNNING EXAMPLE
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Inconsistent
postconditions

Negation of 
each other

Interference
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A RUNNING EXAMPLE
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Inconsistent support Competing
needs
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PLANNING GRAPHS
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To be continued …


