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MOTION PLANNING→ SEARCH PROBLEM
• Path planning: computing a continuous sequence (“a path”) 

of configurations (states) between an initial configuration 
(start) and a final configuration (goal) 
o Respecting constraints (e.g., avoiding obstacles, physical 

limitations in rotations and translations) 
o Optimizing metrics (length, energy, time, smoothness, …)
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• Motion planning: pp + 
time parameter

• Trajectory planning: pp + 
velocity profile

start

goal
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MOTION PLANNING EXAMPLES
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Kia car factory
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MOTION PLANNING EXAMPLES
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Baldur’s gate
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MOTION PLANNING ISSUES
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…3D physical spaces, n-dimensional states, continuous spaces …

Free world space ≠ Accessible to the ”agent”

Non-holonomic constraints States = Configurations + World
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SIMPLIFIED (BUT USEFUL!) SETTINGS
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• Let’s consider an omnidirectional point “agent”
• Let’s discretize the free world representing it into a graph
• Let’s search for a (discrete) path in the graph 
• Let the world be static
• Let the cost be the length of the path
• Let’s forget about time and velocity

start

goal

Combinatorial planning
Road map graph



15781 Fall 2016: Lecture 5

CELL DECOMPOSITION
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• The world is covered by a discrete set of cells
• First guess: a grid
• Mark cells that intersect obstacles as blocked, free otherwise
• The motion through a cell happens through its center
• Each cell has n=8 neighbors
• Find path through centers of free cells

Which are the nodes and the 
edges of the road map graph?

The shortest path is the 
optimal path on the graph!
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Is this approach 
complete? 
Optimal?
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ITERATIVE CELL DECOMPOSITION
• Distinguish between

o Cells that are fully contained in obstacles
o Cells that intersect obstacles

• If no path found, subdivide the mixed cells
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QUADTREE CELL DECOMPOSITION
• Doing the decomposition in a smart way, save on states
• Any n-tree decomposition can be used (quad- and oct-trees 

are widely used)
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IS IT COMPLETE NOW?
• An algorithm is resolution complete when:

a. If a path exists, it finds it in finite time
b. If a path does not exist, it returns in finite 

time
• Poll 1: Cell decomposition satisfies:

1. a but not b
2. b but not a
3. Both a and b
4. Neither a nor b
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CELL SHAPES AND PATH EXECUTION
• The cell sequence provides a feasible path, however 

navigation inside a cell and between cells can be 
done in many different ways (path execution)

• Cells can have different shapes
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Less distortion of distances Small area / Large perimeter

Figures from Amit Patel
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CELL SHAPES AND PATH EXECUTION
• Cells’ centers can be replaced by edges or vertices

13Figures from Amit Patel

More flexibility for local motion
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CELL SHAPES AND PATH EXECUTION
• Meshes can be used instead of uniform cells

14Figures from Amit Patel
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A* WITH TILES AND CENTERS
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Shortest paths through cell centers
Shortest path
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“PROBLEM” OF A* / REPRESENTATION
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• A shortest path on the road map graph is not equivalent to a 
shortest path in the continuous environment

• A* propagates information on the graph and constrains paths to be 
formed by edges of the graph, that only connect neighbor states
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A* WITH TILES AND CENTERS
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SOLUTION 1: A* SMOOTHING
• Allows connection to further states than 

neighbors on the graph
• Key observation:

o If 𝑥",… 𝑥𝑗, … 	𝑥𝑘	 … 	𝑥( is valid path
o And 𝑥) is visible from 𝑥*
o Then 𝑥",… , 𝑥*, 𝑥), … , 𝑥( is a valid path
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SMOOTHING WORKS!
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A shortest path through cell centers
Shortest path

What is left are only the navigation points 
that go around the corners of obstacles
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SMOOTHING DOESN’T WORK!
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A shortest path through cell centers
Shortest path
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SOLUTION 2: THETA*
• Allow parents that are non-neighbors in the graph to be 

used during search
• Standard A*

o Cost-to-come: 𝑔(𝑦) 	= 	𝑔(𝑥) + 𝑐(𝑥, 𝑦)
o Insert 𝑦 in frontier with cost estimate

𝑓 𝑦 = 𝑔(𝑥) + 𝑐(𝑥, 𝑦) + ℎ(𝑦)
• Theta*

o If parent(𝑥) is visible from 𝑦, insert 𝑦 with cost estimate
𝑓(𝑦) = 𝑔(parent(𝑥)) + 𝑐(parent(𝑥), 𝑦) + ℎ(𝑦)

o parent(x) becomes the parent of y, allowing the two-
step stretching to iterate, if possible

21
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THETA* WORKS!
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Theta* path, likely J
Shortest path
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THETA* WORKS!
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[Nash, AIGameDev 2010]
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THE OPTIMAL PATH
• Polygonal path: sequence of 

connected straight lines
• Inner vertex of polygonal path: 

vertex that is not beginning or 
end

• Theorem: Assuming polygonal 
obstacles, a shortest path is a 
polygonal path whose inner 
vertices are vertices of obstacles

24
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PROOF OF THEOREM
• Suppose for contradiction that 

shortest path is not polygonal
• Obstacles are polygonal ⇒	∃ point 
𝑝 in interior of free space such 
that “spath through 𝑝 is curved”

• ∃ disc of free space around 𝑝
• Path through disc can be 

shortened by connecting points of 
entry and exit à It’s polygonal!
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𝑝
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PROOF OF THEOREM
• Path is polygonal!
• Vertex cannot lie in interior 

of free space, otherwise we 
can do the same trick

• Vertex cannot lie on a the 
interior of an edge, otherwise 
we can do the same trick ∎
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𝑝

𝑝
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How would we define 
a graph on which A* 
would be optimal?
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VISIBILITY GRAPHS
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Sweeping,
O(n2) complexity
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PLANNING, MORE GENERALLY

• AI (also) studies rational action
• Devising a plan of action to achieve one’s 

goal is a critical part of AI
• In fact, planning is glorified search 
• We will consider a structured 

representation of states

29
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STATE REPRESENTATIONS
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B C

(a) Atomic (b) Factored (b) Structured

B C
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STATE REPRESENTATIONS

31Examples from Mausam
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PROPOSITIONAL STRIPS PLANNING

• STRIPS = Stanford Research Institute Problem Solver 
(1971)

• PDDL = Planning Domain Definition Language
• State is a conjunction of conditions, e.g., 

at(Truck1,Shadyside)∧at(Truck2,Oakland)
• States are transformed via operators that have the form 

Preconditions ⇒ Postconditions (effects)

32
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PROPOSITIONAL STRIPS PLANNING

• Pre is a conjunction of positive and negative conditions 
that must be satisfied to apply the operation

• Post is a conjunction of positive and negative conditions 
that become true when the operation is applied

• We are given the initial state
• We are also given the goals, a conjunction of positive and 

negative conditions
• We think of a state as a set of positive conditions, hence 

an operation has an “add list” (the positive postconditions) 
and a “delete list” (the negative postconditions)

33
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BLOCKS WORLD
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A

C

B

A

C

B

Start Goal
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BLOCKS WORLD

• Conditions: on(A,B), on(A,C), on(B,A), 
on(B,C), on(C,A), on(C,B), clear(A), clear(B), 
clear(C), on(A,Table), on(B,Table), on(C,Table)

• Operators for moving blocks
o Move C from A to the table:

clear(C) ∧ on(C,A) 
⇒ on(C,Table) ∧ clear(A) ∧ ¬on(C,A)

o Move A from the table to B
clear(A) ∧ on(A,Table) ∧ clear(B)
⇒ on(A,B) ∧ ¬clear(B) and ¬on(A,Table)

35
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THE PLAN

• State: on(C,A), on(A,Table), on(B,Table), 
clear(B), clear(C) 

• Action:
clear(C) ∧ on(C,A) 
⇒ on(C,Table) ∧ clear(A) ∧ ¬on(C,A)

36

A

C

B
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THE PLAN

• State: on(A,Table), on(B,Table), clear(B), 
clear(C), on(C,Table), clear(A) 

• Action:
clear(C) ∧ on(B,Table) ∧ clear(B)
⇒ on(B,C) ∧ ¬clear(C) and ¬on(B,Table)

37

A CB
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THE PLAN

• State: on(A,Table), clear(B), on(C,Table), 
clear(A), on(B,C)

• Action:
clear(B) ∧ on(A,Table) ∧ clear(A)
⇒ on(A,B) ∧ ¬clear(B) and ¬on(A,Table)

38

A C

B
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THE PLAN

• State: on(C,Table), clear(A), on(B,C), 
on(A,B)

• Goals: on(A,B), on(B,C)

39

A

C

B
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COMPLEXITY OF PLANNING

• PLANSAT is the problem of determining 
whether a given planning problem is 
satisfiable

• In general PLANSAT is PSPACE-complete
• We will look at some special cases (that 

are solved in Polynomial time)

40
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COMPLEXITY OF PLANNING

• Theorem 1: Assume that actions have only 
positive preconditions and a single 
postcondition. Then PLANSAT is in P

• Theorem 2: Blocks world problems can be 
encoded as above

• Silly corollary: Blocks world problems can 
be solved in polynomial time (Duh)

41
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PROOF OF THEOREM 2*
• We will convert blocks world operators to operators that 

have only positive preconditions and a single postcondition
• Let the blocks be 𝐵", … ,𝐵(
• Conditions: off(𝑖, 𝑗) means 𝐵; is not on top of 𝐵*
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𝐵*

𝐵;

𝐵; 𝐵*

<off(𝑘, 𝑖) ∧<off(𝑘, 𝑗) ⇒ 	off(𝑖, 𝑗)
)>;)

<off(𝑘, 𝑖) ∧<off(𝑖, 𝑘) ∧<off(𝑘, 𝑗)
)

⇒ 	¬off(𝑖, 𝑗)
))

*Just for fun
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PROOF OF THEOREM 1*
• Lemma: It is sufficient to consider plans that 

first make conditions true, then make conditions 
false

• Proof:
o Suppose that 𝑜𝑖 and 𝑜;A" are adjacent operators s.t.

the postcondition 𝑝 of 𝑜𝑖 is negative and the 
postcondition 𝑞 of 𝑜;A" is positive

o If 𝑝 = 𝑞 then we can delete 𝑜𝑖 because its effect is 
reversed

o Otherwise, we can switch 𝑜𝑖 and 𝑜;A" ∎

43* Just for fun
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PROOF OF THEOREM 1*
• By the lemma, if there is a solution, there is 

an intermediate state 𝑆 such that
o 𝑆 can be reached from the initial state using 

operations with positive postconditions
o The positive goals are a subset of 𝑆
o Negative goals can be achieved via operations 

with negative postconditions
• Search for an intermediate state 𝑆 with these 

properties

44* Just for fun
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PROOF OF THEOREM 1*
• Implement procedure 
TurnOn 𝑋 :	given set of 
conditions 𝑋, find maximal state 
𝑆 such that 𝑆 ∩ 𝑋 = ∅ that can 
be reached from initial state 
using operators with positive 
postconditions
o Preconditions are positive, so:
o Simply apply all such operators 

until it makes no difference
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Initial state

𝑆

* Just for fun
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PROOF OF THEOREM 1*
• Denote 𝑆′′	the state resulting from 

removing negative goals from 𝑆
• Implement procedure 
TurnOff(𝑆):	find the maximal 
𝑆′	such that 𝑆′′ is reachable from 
𝑆′	using operators with negative 
postconditions in 𝑆
o Simply search backwards from 

𝑆′′	and reverse operators with 
(i) negative postconditions in 𝑆
(ii) preconditions satisfied
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𝑆′′

𝑆

Goal

𝑆′

* Just for fun
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PROOF OF THEOREM 1*
• In the first iteration, if 

positive goals are not 
satisfied by 𝑆, there is 
no way to achieve 
them

• If 𝑆 ∖ 𝑆O ≠ ∅, it is 
impossible to remove 
these conditions; must 
be added to 𝑋

• 𝑋 grows monotonically 
⇒	polynomial time ∎
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𝑋 = ∅
loop
𝑆 = TurnOn(𝑋)
if 𝑆 does not contain positive   

goals then return reject
𝑆O = TurnOff(𝑆)
if 𝑆 = 𝑆′ then return accept
𝑋 = 𝑋 ∪ 𝑆 ∖ 𝑆O
if 𝑋 intersects with initial 

state then return reject

* Just for fun
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SUMMARY
• Terminology:

o Road map graph
o Cell decomposition
o Resolution completeness
o Visibility graph
o Theta*
o STRIPS

• Useful ideas:
o Natural restrictions can drastically

decrease the complexity of planning
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