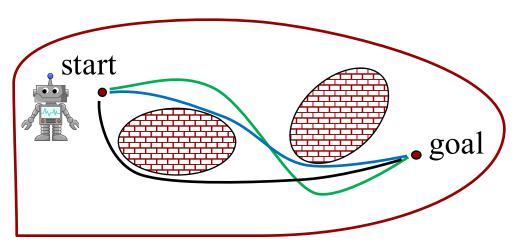
CMU 15-781 Lecture 5: Planning I

Teacher: Gianni A. Di Caro

Motion Planning \rightarrow Search Problem

- Path planning: computing a continuous sequence ("a path") of configurations (states) between an initial configuration (start) and a final configuration (goal)
 - Respecting *constraints* (e.g., avoiding obstacles, physical limitations in rotations and translations)
 - $_{\circ}$ Optimizing metrics (length, energy, time, smoothness, ...)

• **Trajectory planning:** pp + velocity profile



15781 Fall 2016: Lecture 5

MOTION PLANNING EXAMPLES

Alpha Puzzle 1.0 Solution James Kuffner, Feb. 2001

model by DSMFT group, Texas A&M Univ. original model by Boris Yamrom, GE

Kia car factory

15781 Fall 2016: Lecture 5

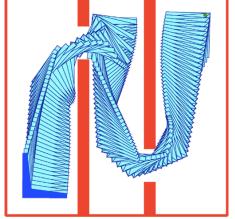
MOTION PLANNING EXAMPLES

Baldur's gate

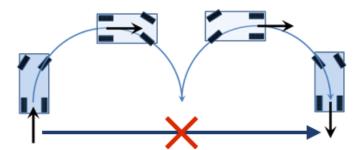
15781 Fall 2016: Lecture 5

MOTION PLANNING ISSUES

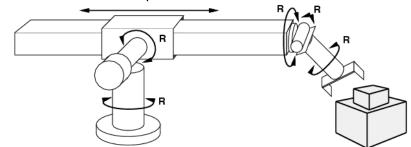
Free world space \neq Accessible to the "agent"



Non-holonomic constraints



States = Configurations + World

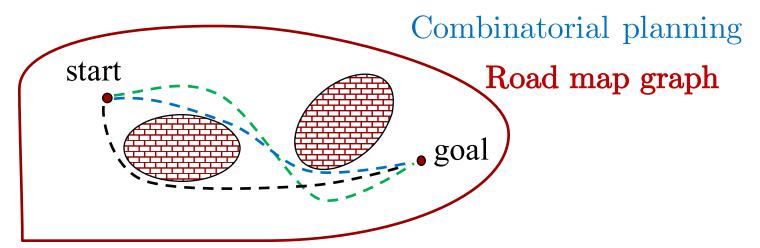


 $\dots 3D$ physical spaces, n-dimensional states, continuous spaces \dots

15781 Fall 2016: Lecture 5

SIMPLIFIED (BUT USEFUL!) SETTINGS

- Let's consider an omnidirectional **point** "agent" •
- Let's discretize the free world representing it into a graph
- Let's search for a (discrete) path in the graph
- Let the world be *static*
- Let the cost be the *length* of the path
- Let's forget about *time* and *velocity*



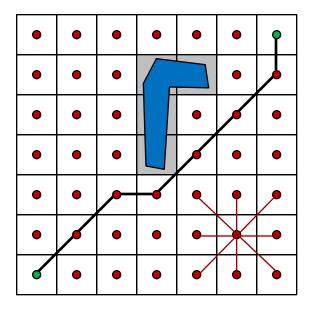
15781 Fall 2016: Lecture 5

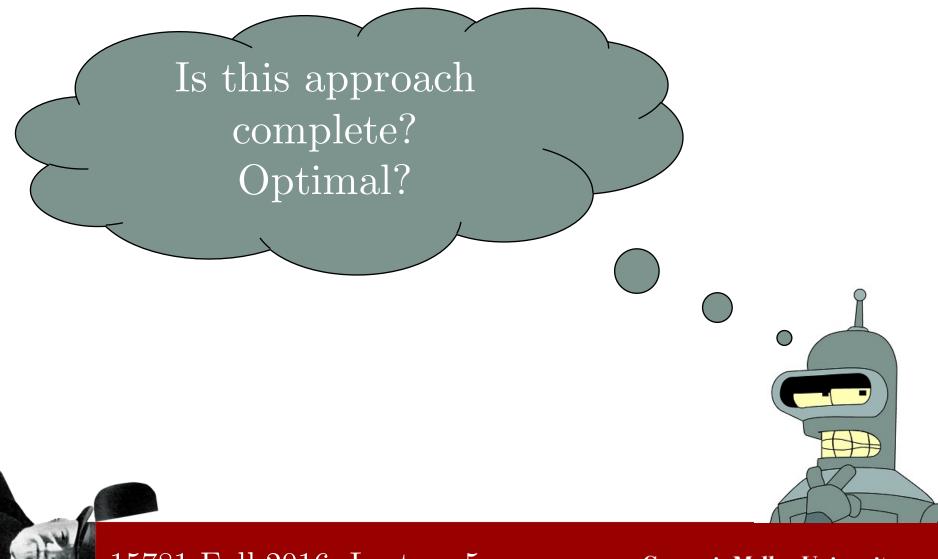
CELL DECOMPOSITION

- The world is covered by a *discrete set of cells*
- First guess: a grid
- Mark cells that *intersect* obstacles as **blocked**, **free** otherwise
- The motion through a cell happens through its *center*
- Each cell has n=8 neighbors
- Find path through centers of free cells

Which are the nodes and the edges of the road map graph?

The shortest path is the optimal path *on the graph!*

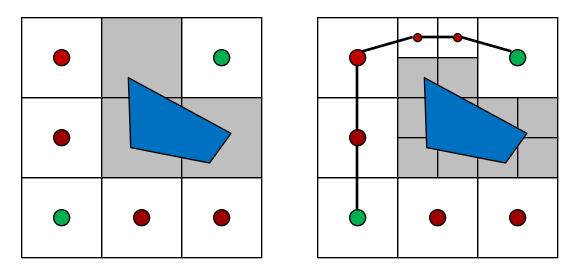




15781 Fall 2016: Lecture 5

ITERATIVE CELL DECOMPOSITION

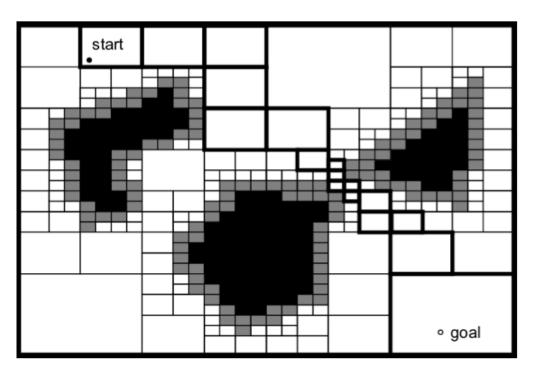
- Distinguish between
 - Cells that are *fully contained* in obstacles
 - Cells that intersect obstacles
- If no path found, subdivide the mixed cells



15781 Fall 2016: Lecture 5

QUADTREE CELL DECOMPOSITION

- Doing the decomposition in a smart way, save on states
- Any *n*-tree decomposition can be used (quad- and oct-trees are widely used)



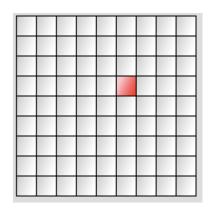
15781 Fall 2016: Lecture 5

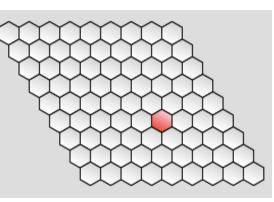
IS IT COMPLETE NOW?

- An algorithm is resolution complete when:
 - a. If a path exists, it finds it in finite time
 - b. If a path does not exist, it returns in finite time
- Poll 1: Cell decomposition satisfies:
 - 1. a but not b
 - 2. b but not a
 - 3. Both a and b
 - 4. Neither a nor b

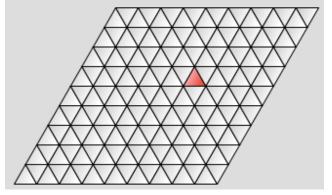
Cell shapes and Path execution

- The cell sequence provides a feasible path, however navigation inside a cell and between cells can be done in many different ways (*path execution*)
- Cells can have different *shapes*





Less distortion of distances

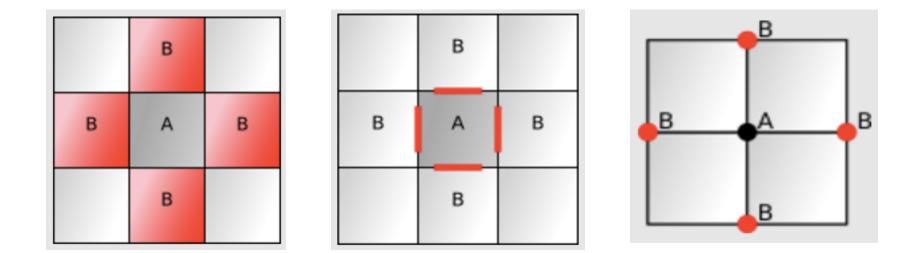


Small area / Large perimeter

Figures from Amit Patel

Cell shapes and Path execution

• Cells' centers can be replaced by edges or vertices

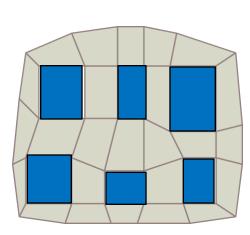


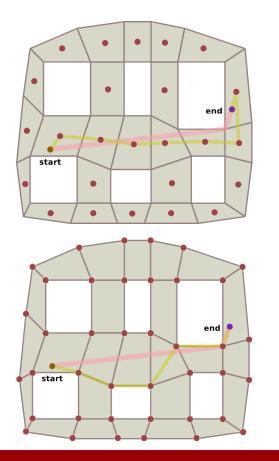
More flexibility for local motion

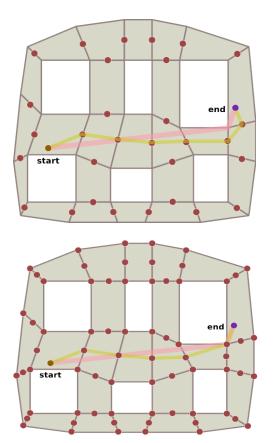
Figures from Amit Patel

Cell shapes and Path execution

• Meshes can be used instead of uniform cells

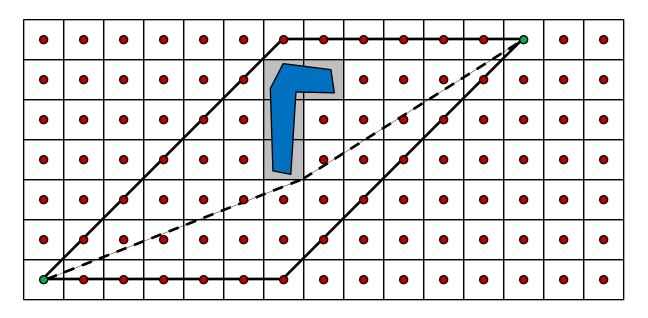






Figures from Amit Patel

A* WITH TILES AND CENTERS

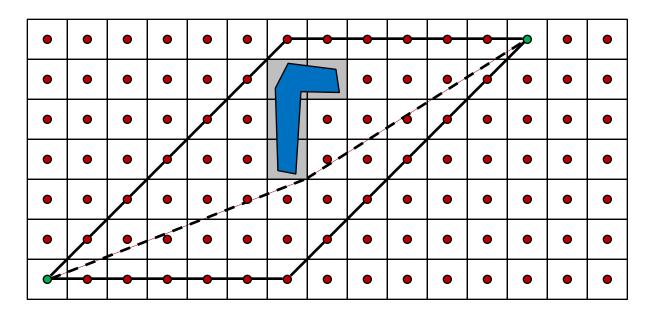


— Shortest paths through cell centers

---- Shortest path

15781 Fall 2016: Lecture 5

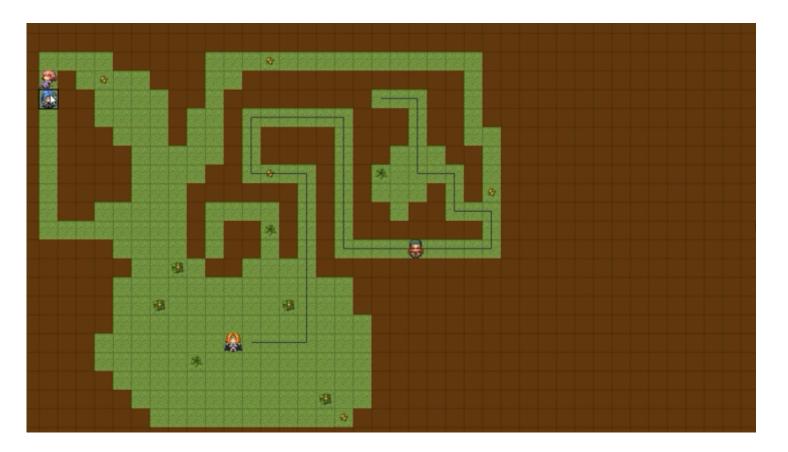
"PROBLEM" OF A* / REPRESENTATION



- A shortest path on the road map graph is *not* equivalent to a shortest path in the continuous environment
- A* propagates information on the graph and constrains paths to be formed by edges of the graph, *that only connect neighbor states*

15781 Fall 2016: Lecture 5

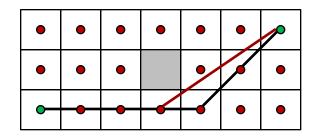
A* WITH TILES AND CENTERS



15781 Fall 2016: Lecture 5

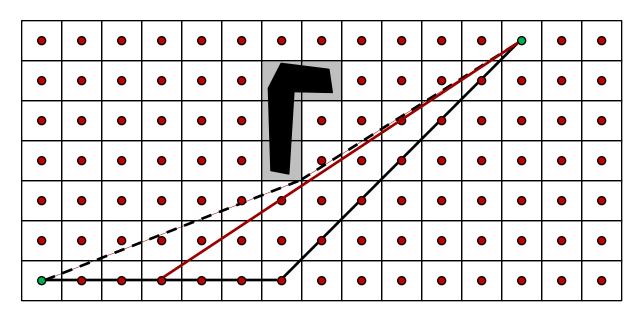
Solution 1: A* Smoothing

- Allows connection to further states than neighbors on the graph
- Key observation:
 - If $x_1, \dots, x_j, \dots, xk \dots, x_n$ is valid path
 - And x_k is visible from x_i



15781 Fall 2016: Lecture 5

SMOOTHING WORKS!



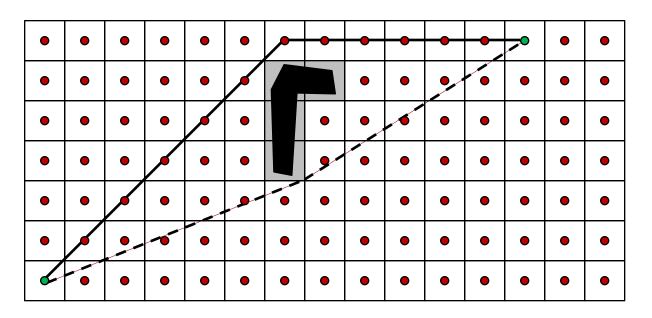
— A shortest path through cell centers

---- Shortest path

What is left are only the navigation points that go around the corners of obstacles

15781 Fall 2016: Lecture 5

SMOOTHING DOESN'T WORK!



— A shortest path through cell centers

---- Shortest path

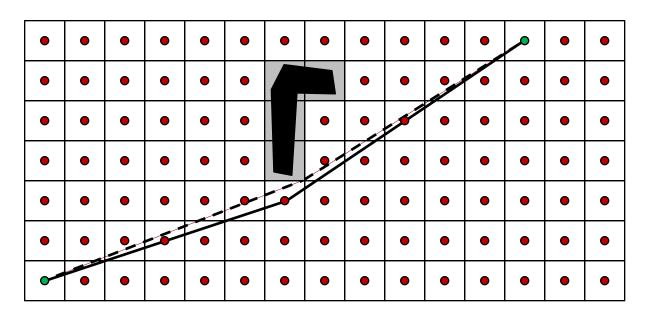
15781 Fall 2016: Lecture 5

Solution 2: Theta*

- Allow parents that are *non-neighbors* in the graph to be used during search
- Standard A*
 - Cost-to-come: g(y) = g(x) + c(x, y)
 - Insert y in frontier with cost estimate f(y) = g(x) + c(x, y) + h(y)
- Theta*
 - If parent(x) is visible from y, insert y with cost estimate f(y) = g(parent(x)) + c(parent(x), y) + h(y)
 - parent(\boldsymbol{x}) becomes the parent of \boldsymbol{y} , allowing the twostep stretching to iterate, if possible

15781 Fall 2016: Lecture 5

THETA* WORKS!

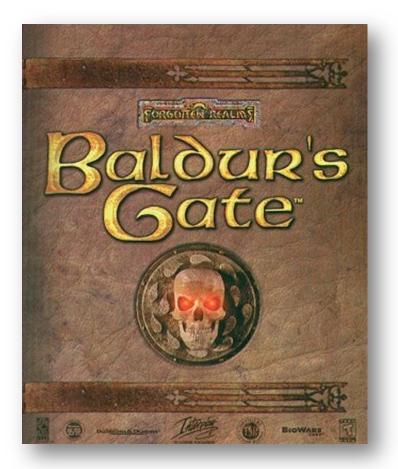


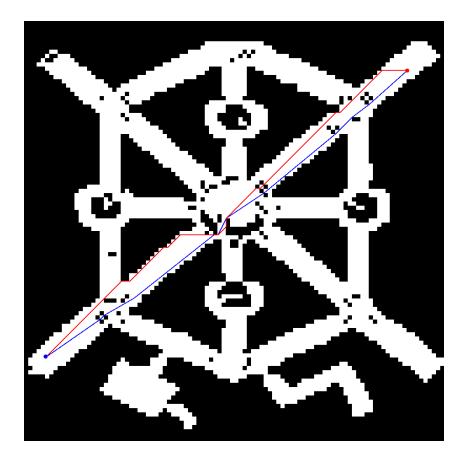
— Theta^{*} path, likely \bigcirc

---- Shortest path

15781 Fall 2016: Lecture 5

THETA* WORKS!

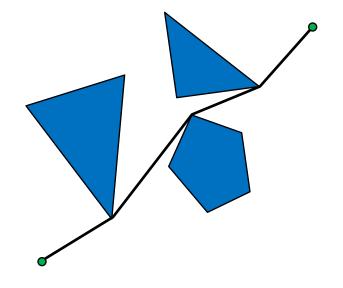




[Nash, AIGameDev 2010]

THE OPTIMAL PATH

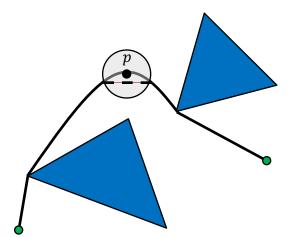
- Polygonal path: sequence of connected straight lines
- Inner vertex of polygonal path: vertex that is not beginning or end
- Theorem: Assuming *polygonal obstacles*, a shortest path is a *polygonal path* whose inner vertices are vertices of obstacles



15781 Fall 2016: Lecture 5

PROOF OF THEOREM

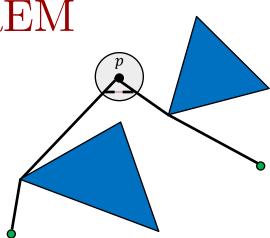
- Suppose for contradiction that shortest path is not polygonal
- Obstacles are polygonal $\Rightarrow \exists$ point p in interior of free space such that "spath through p is curved"
- \exists disc of free space around p
- Path through disc can be shortened by connecting points of entry and exit → It's polygonal!

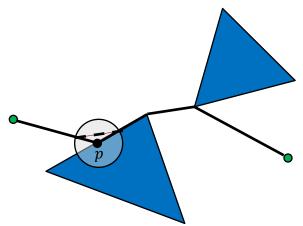


15781 Fall 2016: Lecture 5

PROOF OF THEOREM

- Path is polygonal!
- Vertex cannot lie in interior of free space, otherwise we can do the same trick
- Vertex cannot lie on a the interior of an edge, otherwise we can do the same trick ■

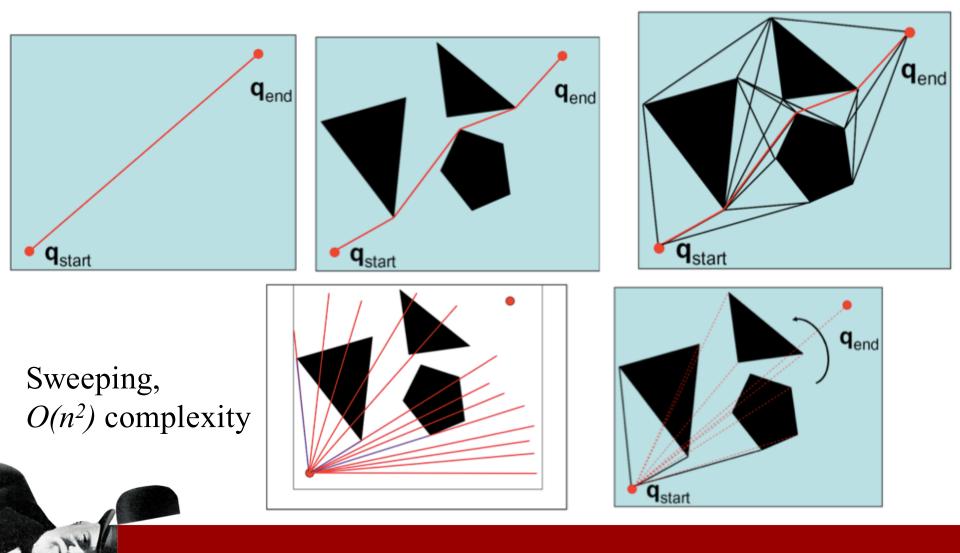




How would we define a graph on which A* would be optimal?

15781 Fall 2016: Lecture 5

VISIBILITY GRAPHS



15781 Fall 2016: Lecture 5

PLANNING, MORE GENERALLY

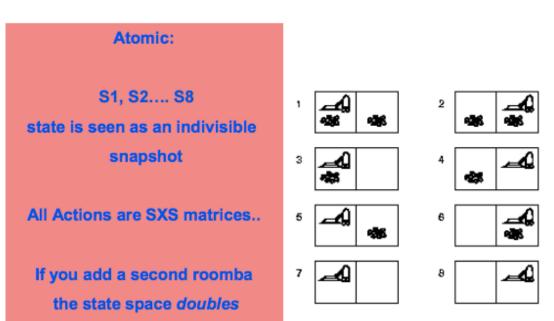
- AI (also) studies rational action
- Devising a plan of action to achieve one's goal is a critical part of AI
- In fact, planning is glorified search
- We will consider a *structured* representation of states

STATE REPRESENTATIONS

Туре	State representation	Focus
Atomic	States are indivisible; No internal structure	Search on atomic states;
Propositional (aka Factored)	States are made of state variables that take values (Propositional or Multi- valued or Continuous)	Search+inference in logical (prop logic) and probabilistic (bayes nets) representations
Relational	States describe the objects in the world and their inter-relations	Search+Inference in predicate logic (or relational prob. Models)
B C		
(a) Atomic	(b) Factored	(b) Structured

15781 Fall 2016: Lecture 5

STATE REPRESENTATIONS



Relational:

World made of objects: Roomba; L-room, R-room, dirt Relations: In (<robot>, <room>); dirty(<room>) If you add a second roomba, or more rooms, only the objects increase.

If you want to consider noisiness, you just need to add one other relation

Propositional/Factored: States made up of 3 state variables Dirt-in-left-room T/F Dirt-in-right-room T/F Roomba-in-room L/R

Each state is an assignment of Values to state variables 2³ Different states

Actions can just mention the variables they affect

Note that the representation is compact (logarithmic in the size of the state space)

If you add a second roomba, the Representation increases by just one More state variable. If you want to consider "noisiness" of rooms, we need *two* variables, one for Each room

Examples from Mausam

PROPOSITIONAL STRIPS PLANNING

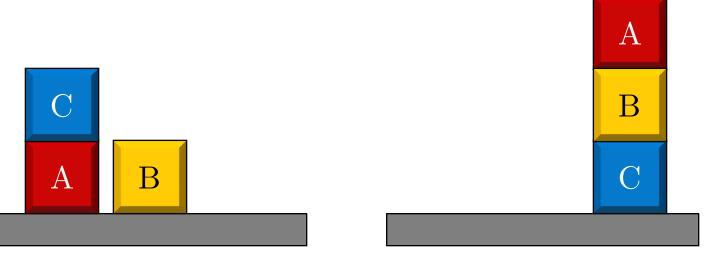
- **STRIPS** = Stanford Research Institute Problem Solver (1971)
- PDDL = Planning Domain Definition Language
- State is a conjunction of conditions, e.g., at(Truck₁,Shadyside) \land at(Truck₂,Oakland)
- States are transformed via operators that have the form Preconditions \Rightarrow Postconditions (effects)

PROPOSITIONAL STRIPS PLANNING

- Pre is a conjunction of positive and negative conditions that must be satisfied to apply the operation
- Post is a conjunction of positive and negative conditions that become true when the operation is applied
- We are given the initial state
- We are also given the goals, a conjunction of positive and negative conditions
- We think of a state as a *set of positive conditions*, hence an operation has an "add list" (the positive postconditions) and a "delete list" (the negative postconditions)

15781 Fall 2016: Lecture 5

BLOCKS WORLD



Start

Goal

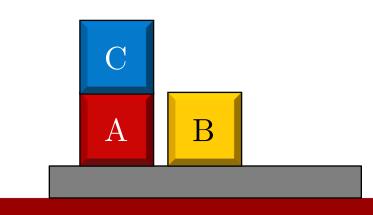
BLOCKS WORLD

- Conditions: on(A,B), on(A,C), on(B,A), on(B,C), on(C,A), on(C,B), clear(A), clear(B), clear(C), on(A,Table), on(B,Table), on(C,Table)
- Operators for moving blocks
 - Move C from A to the table: $\operatorname{clear}(C) \land \operatorname{on}(C,A)$ $\Rightarrow \operatorname{on}(C,\operatorname{Table}) \land \operatorname{clear}(A) \land \neg \operatorname{on}(C,A)$
 - Move A from the table to B $\operatorname{clear}(A) \wedge \operatorname{on}(A, \operatorname{Table}) \wedge \operatorname{clear}(B)$ $\Rightarrow \operatorname{on}(A, B) \wedge \neg \operatorname{clear}(B) \text{ and } \neg \operatorname{on}(A, \operatorname{Table})$

15781 Fall 2016: Lecture 5

THE PLAN

- State: on(C,A), on(A,Table), on(B,Table), clear(B), clear(C)
- Action: $\operatorname{clear}(C) \land \operatorname{on}(C,A)$ $\Rightarrow \operatorname{on}(C,\operatorname{Table}) \land \operatorname{clear}(A) \land \neg \operatorname{on}(C,A)$

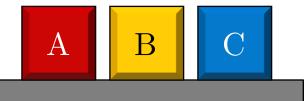


15781 Fall 2016: Lecture 5

THE PLAN

- State: on(A,Table), on(B,Table), clear(B), clear(C), on(C,Table), clear(A)
- Action:

 $\begin{aligned} &\operatorname{clear}(C) \land \operatorname{on}(B, Table) \land \operatorname{clear}(B) \\ &\Rightarrow \operatorname{on}(B, C) \land \neg \operatorname{clear}(C) \text{ and } \neg \operatorname{on}(B, Table) \end{aligned}$

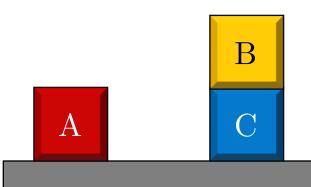


15781 Fall 2016: Lecture 5

THE PLAN

- State: on(A,Table), clear(B), on(C,Table), clear(A), on(B,C)
- Action:

 $\begin{aligned} &\operatorname{clear}(B) \land \operatorname{on}(A, \operatorname{Table}) \land \operatorname{clear}(A) \\ &\Rightarrow \operatorname{on}(A, B) \land \neg \operatorname{clear}(B) \text{ and } \neg \operatorname{on}(A, \operatorname{Table}) \end{aligned}$



15781 Fall 2016: Lecture 5

THE PLAN

A

В

C

- State: on(C,Table), clear(A), on(B,C), on(A,B)
- Goals: on(A,B), on(B,C)

COMPLEXITY OF PLANNING

- PLANSAT is the problem of determining whether a given planning problem is *satisfiable*
- In general Plansat is **PSPACE**-complete
- We will look at some special cases (that are solved in Polynomial time)

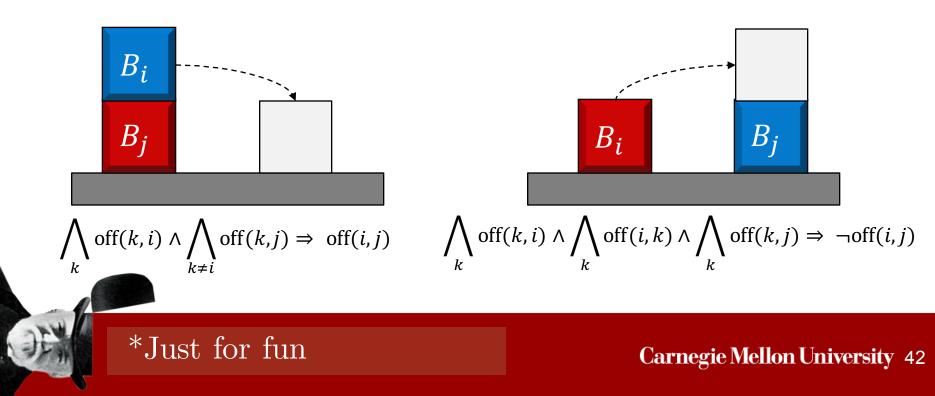
15781 Fall 2016: Lecture 5

COMPLEXITY OF PLANNING

- Theorem 1: Assume that actions have only positive preconditions and a single postcondition. Then PLANSAT is in \mathbf{P}
- Theorem 2: Blocks world problems can be encoded as above
- Silly corollary: Blocks world problems can be solved in polynomial time (Duh)

Proof of Theorem 2^*

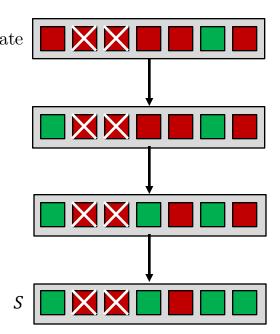
- We will convert blocks world operators to operators that have only positive preconditions and a single postcondition
- Let the blocks be B_1, \ldots, B_n
- Conditions: off(i, j) means B_i is not on top of B_j



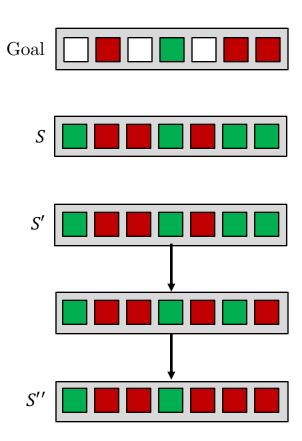
- Lemma: It is sufficient to consider plans that first make conditions true, then make conditions false
- Proof:
 - Suppose that o_i and o_{i+1} are adjacent operators s.t. the postcondition p of o_i is negative and the postcondition q of o_{i+1} is positive
 - If p = q then we can delete o_i because its effect is reversed
 - Otherwise, we can switch o_i and $o_{i+1} \blacksquare$

- By the lemma, if there is a solution, there is an intermediate state S such that
 - \circ *S* can be reached from the initial state using operations with positive postconditions
 - $_{\circ}$ $\,$ The positive goals are a subset of S
 - Negative goals can be achieved via operations with negative postconditions
- Search for an intermediate state S with these properties

- Implement procedure TurnOn(X): given set of conditions X, find maximal state S such that $S \cap X = \emptyset$ that can be reached from initial state using operators with positive postconditions
 - Preconditions are positive, so:
 - Simply apply all such operators until it makes no difference



- Denote S'' the state resulting from removing negative goals from S
- Implement procedure TurnOff(S): find the maximal S' such that S'' is reachable from S' using operators with negative postconditions in S

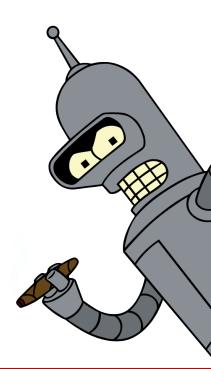


- In the first iteration, if positive goals are not satisfied by S, there is no way to achieve them
- If $S \setminus S' \neq \emptyset$, it is impossible to remove these conditions; must be added to X
- X grows monotonically \Rightarrow polynomial time

 $X = \emptyset$ loop S = TurnOn(X)if S does not contain positive goals then return reject S' = TurnOff(S)if S = S' then return accept $X = X \cup (S \setminus S')$ if X intersects with initial state then return reject

SUMMARY

- Terminology:
 - \circ Road map graph
 - Cell decomposition
 - Resolution completeness
 - Visibility graph
 - \circ Theta*
 - STRIPS
- Useful ideas:
 - Natural restrictions can drastically decrease the complexity of planning



15781 Fall 2016: Lecture 5