CMU 15-781 Lecture 4: Informed Search

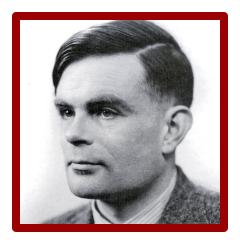
Teacher: Gianni A. Di Caro

UNINFORMED VS. INFORMED



Uninformed

Can only generate successors and distinguish goals from non-goals



Informed

Strategies that can distinguish whether one non-goal is more promising than another

15781 Fall 2016: Lecture 4

REMINDER: TREE SEARCH

function TREE-SEARCH(problem, strategy) set of *frontier nodes* contains the start state of problem loop

if there are no frontier nodes
 return failure
choose a frontier node for expansion using strategy
if the node contains a goal

return corresponding solution

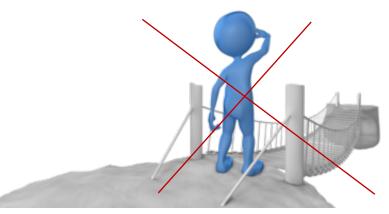
else expand the node

add the resulting nodes to the set of frontier nodes

RECAP:

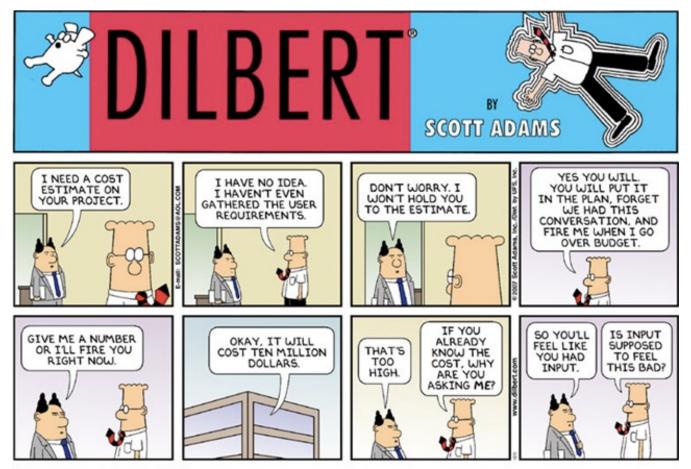
STRATEGIES FOR UNINFORMED SEARCH

- BFS: Shallowest unexpanded node
- DFS / IDP: Deepest unexpanded node
- UCS: Lowest cost-to-come (from start)
- LS: Local highest-value successor node



15781 Fall 2016: Lecture 4

ESTIMATE OF COST-TO-GO



© Scott Adams, Inc./Dist. by UFS, Inc.

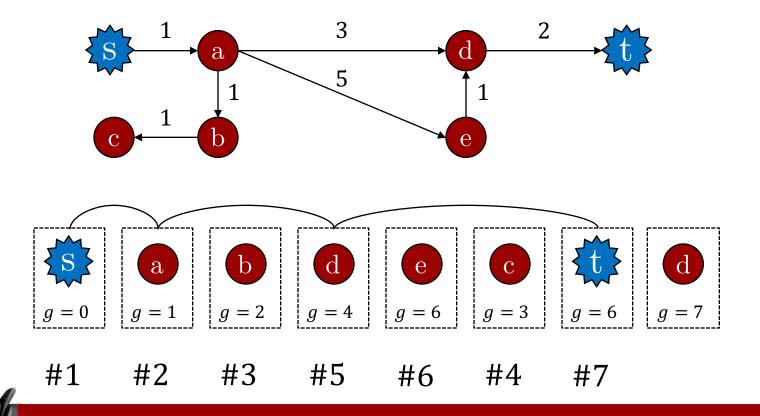
15781 Fall 2016: Lecture 4

STRATEGY: BEST-FIRST SEARCH

- General strategy template for *informed* search
- A node n in the frontier set is selected for expansion based on an **evaluation function** f(n), which is a **cost estimate**
- Backward (to-come) and (estimates of) Forward (to-go) costs
- The node with the *lowest* cost estimate is expanded first
- Data structure: Priority queue using f(n) for ordering

UNIFORM COST SEARCH

• Strategy: Expand by f(x) = g(x) = cost-to-come



15781 Fall 2016: Lecture 4

UCS VS. DIJKSTRA'S ALGORITHM

- All nodes are initially inserted into the PQ (*explicit* graph description is given as input)
- Initial distance (g(s), cost-to-come) from start: $d[s]=0, d[x \neq s] = \infty$
- The node with the *minimal estimated distance* is selected at each step
- Shortest paths to all other nodes or to a single one
- Explicit graph description is not given as input
- Nodes are inserted to the PQ *lazily* during the search, based on node expansion choices
 - $_{\circ}$ $\,$ Can naturally handle the presence of multiple goals $\,$

15781 Fall 2016: Lecture 4

DA

UCS

DIJKSTRA'S ALGORITHM (1959)

Input: Graph G = (V, E) $(\forall x \neq s) \ dist[x] = +\infty$ dist/s = 0S = arnothingQ = V / / Ordered by dist//while $Q \neq \emptyset$ do u = extract min(Q) $S = S \cup \{u\}$ foreach vertex $v \in Adjacent(u)$ do dist[v] = min(dist[v], dist[u] + c(u,v)) // "Relaxation" end do end do

PROBLEM DESCRIPTION + HEURISTIC KNOWLEDGE

- So far, only *problem description* (successors, step costs) has been used to search the state space
- What about using (also) additional, heuristic knowledge, h(x), to direct state expansion by looking forward?

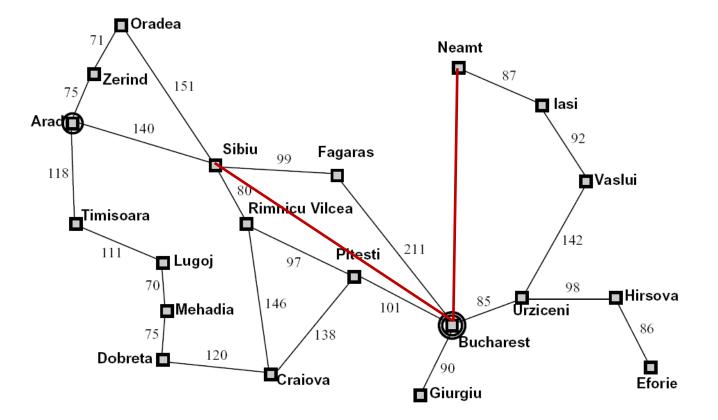
Heuristics are rules of thumb, educated guesses, intuitive judgments or, simply, common sense

> The term derives from the ancient Greek *keuriskein*, meaning *serving to find out, or discover*. Archimedes' *Eureka!* means "I have found it!"

15781 Fall 2016: Lecture 4

EXAMPLE: HEURISTIC

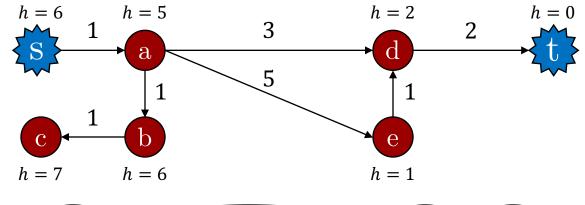
City	Aerial dist
Arad	366
Sibiu	253
Rimnicu Vilcea	193
Fagaras	176
Pitesti	100

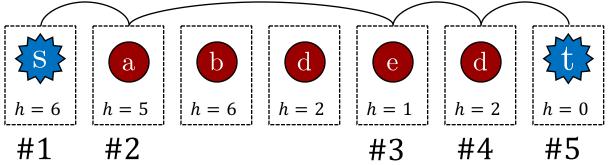


15781 Fall 2016: Lecture 4

GREEDY BEST-FIRST SEARCH

Strategy: Expand by h(x) = heuristic
 evaluation of cost-to-go(al) from x

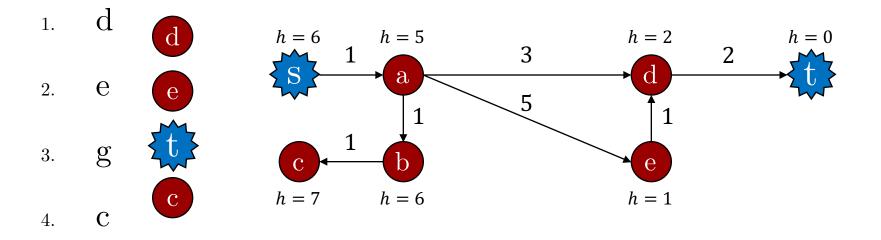




15781 Fall 2016: Lecture 4

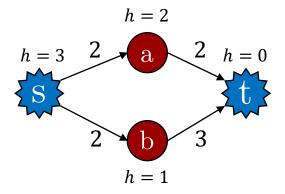
A* SEARCH (1968)

- Strategy: Combine cost-to-come (past) and heuristic estimate of cost-to-go (future), expand by f(x) = h(x) + g(x)
- Poll 1: Which node is expanded fourth?



A* SEARCH

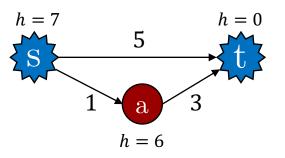
• Should we stop when we discover a goal?



• No: Only stop when we *expand a goal!* (same as in UCS)

Slide adapted from Dan Klein

• Is A* optimal?



- The good path has a pessimistic estimate
- Circumvent this issue by being optimistic!

Slide adapted from Dan Klein

Admissible Heuristics

• h is admissible if for all nodes x,

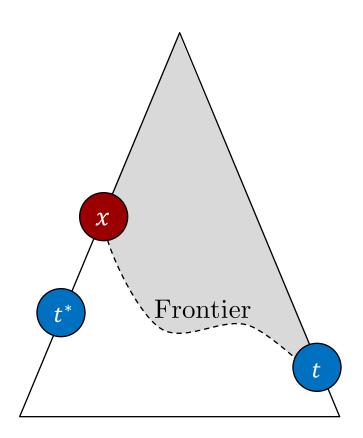
 $h(x) \le h^*(x),$

where h^* is the cost of the optimal path to a goal \rightarrow An admissible heuristic is a *lower bound* on real cost

- Example: Aerial distance in the path finding example
- Example: $h \equiv 0$
- ullet o The tighter the bound, the better

OPTIMALITY OF A*

- Theorem: A* tree search with an admissible heuristic returns an optimal solution
- Proof (by contradiction):
 - Assume that a suboptimal goal t is expanded before the optimal goal t^*



Slide adapted from Dan Klein

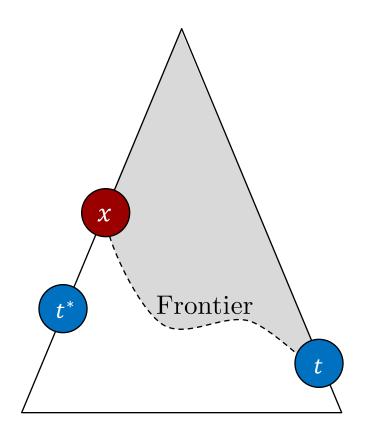
Optimality of A^*

- Proof (cont.):
 - There is a node x in the frontier, on the optimal path to t^* that has been discovered but not expanded yet

•
$$f(x) = g(x) + h(x)$$

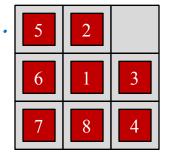
 $\leq g(x) + h^*(x)$

- But since x is on the optimal path to t^* : = $g(t^*) < g(t) = f(t) (h(t)=0)$
- x should have been expanded before $t! \blacksquare$



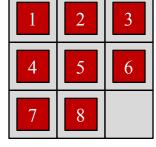
8-PUZZLE HEURISTICS

- Defining a "good" heuristic it's not a trivial task ...
- h_1 : #tiles in wrong position $[h_1(s) = 5]$
- h_2 : sum of Manhattan distances of tiles from goal $[h_1(s) = 2+0+1+3+2+2+0+0=10]$



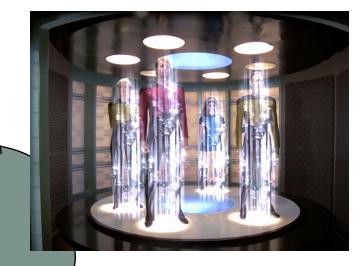
Example state

- Poll 2: Which heuristic is *admissible*?
 - 1. Only h_1
 - 2. Only h_2
 - 3. Both h_1 and h_2
 - 4. Neither one



Goal state

15781 Fall 2016: Lecture 4



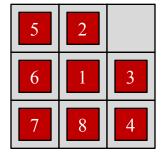
Heuristic for designing admissible heuristics: relax the problem!

Relaxation: Remove functional / domain constraints \rightarrow Add "forbidden" moves

15781 Fall 2016: Lecture 4

DOMINANCE

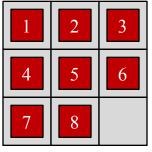
- h_1 : #tiles in wrong position
- h_2 : sum of Manhattan distances of tiles from goal
- $h \text{ dominates } h' \text{ iff } \forall x, h(x) \ge h'(x)$ (h is consistently a tighter bound wrt h')



Example state

- Poll 3: What is the dominance relation between h_1 and h_2 ?
 - 1. h_1 dominates h_2
 - 2. h_2 dominates h_1
 - 3. h_1 and h_2 are incomparable

15781 Fall 2016: Lecture 4



Goal state

8-PUZZLE HEURISTICS

 The following table gives the search cost of A* with the two heuristics, averaged over random 8-puzzles, for various solution lengths

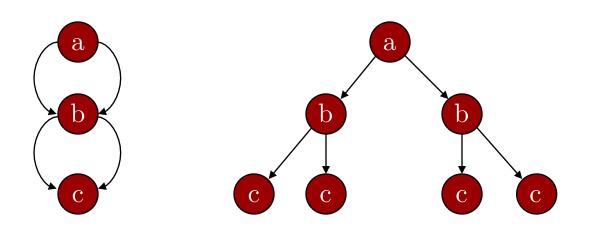
\mathbf{Length}	$A^*(h_1)$	$A^*(h_2)$
16	1301	211
18	3056	363
20	7276	676
22	18094	1219
24	39135	1641

• Moral: <u>Good heuristics are crucial!</u>

15781 Fall 2016: Lecture 4

GRAPH SEARCH

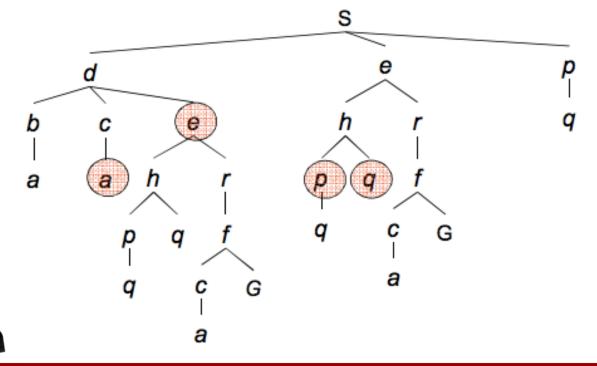
• In tree search, expanding the same state multiple times can cause exponentially more work



15781 Fall 2016: Lecture 4

GRAPH SEARCH

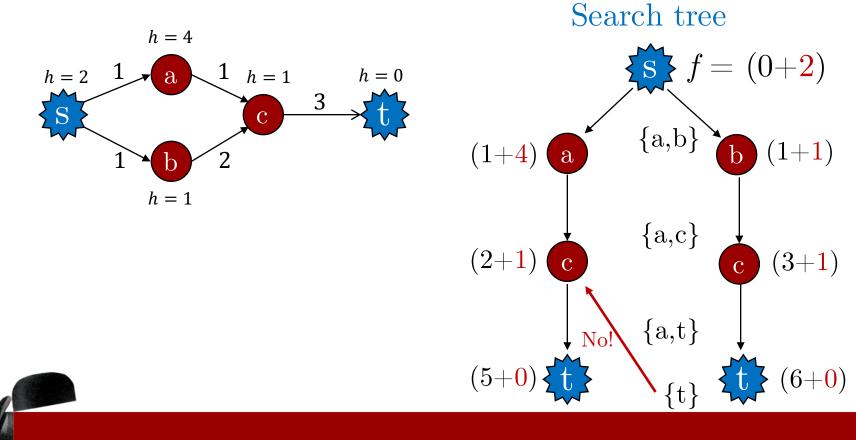
- Same as tree search, but never *expand* a node twice
- E.g., in BFS expanding the circled nodes is not necessary
- Set of already expanded nodes has to be stored in *memory*



Slide adapted from Dan Klein

GRAPH SEARCH AND OPTIMALITY

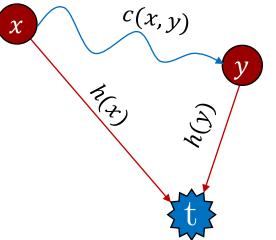
• Is *optimality* of A^{*} under admissible heuristics preserved? No!



Slide adapted from Dan Klein

CONSISTENT HEURISTICS

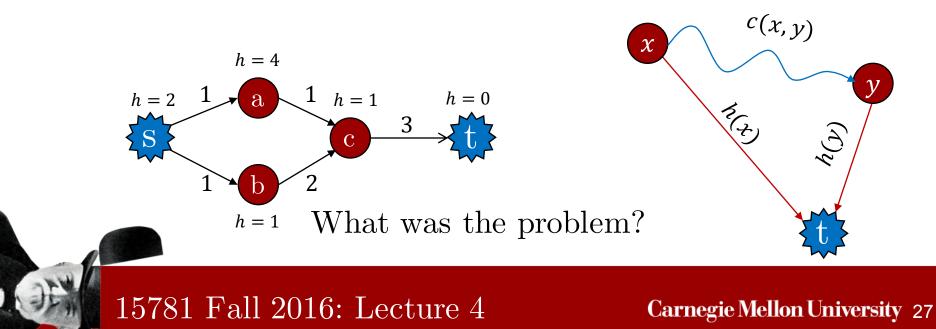
- c(x, y) = real cost of cheapest path between x and y
- h is consistent if for every two nodes x, y, $h(x) \le c(x, y) + h(y)$
- Triangle inequality
- Necessary for graph search optimality



15781 Fall 2016: Lecture 4

CONSISTENT HEURISTICS

- "Consistency": The estimated distance to the goal from x cannot be reduced by moving to a different state y and adding the estimate of the distance to the goal from y to the cost of reaching y from x
- $c(x, y) \ge h(x) h(y) \rightarrow$ The real cost is higher than the cost implied by the heuristics



CONSISTENT HEURISTICS

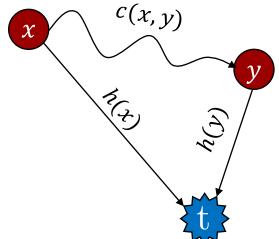
• h is consistent if for every two nodes x, y, $h(x) \le c(x, y) + h(y)$

• Poll 4: What is the relation between admissibility and consistency?

Assuming h(t) = 0 at goals t

2.)

- 1. Admissible \Rightarrow consistent
 - Consistent \Rightarrow admissible
- 3. They are equivalent
- 4. They are incomparable



15781 Fall 2016: Lecture 4

$\mathrm{Consistency} \to \mathrm{Monotonicity}$

- Lemma: If h(x) is consistent, then the values of the cost function f(x) along any path are *nondecreasing*
- Proof:
 - If y is a successor of x: g(y) = g(x) + c(x,y)
 - $_{\circ}$ By consistency: f(y) = g(y) + h(y)

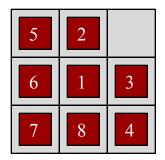
$$= g(x) + c(x,y) + h(y)$$

$$\geq g(x) + h(x) = f(x) \blacksquare$$

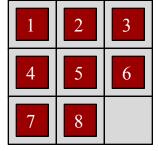
In moving from a state to its neighbor, (a consistent) h must not decrease more than the cost of the edge that connects them. Consistency is a property of h(x), monotonicity is a property of f(x)

8-PUZZLE HEURISTICS, REVISITED

- h_1 : #tiles in wrong position
- h_2 : sum of Manhattan distances of tiles from goal
- Poll 5: Which heuristic is consistent?
 - 1. Only h_1
 - 2. Only h_2
 - 3. Both h_1 and h_2
 - 4. Neither one



Example state



Goal state

15781 Fall 2016: Lecture 4

Heuristic for designing consistent heuristics: design an admissible heuristic!

15781 Fall 2016: Lecture 4

Admissible but Inconsistent Heuristics?

- Keep the LB property, but violate monotonicity
- Inconsistent for at least one pair of states

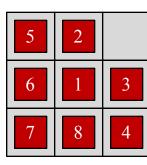
 \mathbf{C}_2

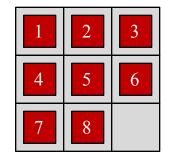
(p)

f(p) = 10

 $f(c_1) = 8($

Manhattan distance for set {1,2,3,4} Manhattan distance for set {5,6,7,8} At each step, choose at random which set What is the relation between heuristic estimates?





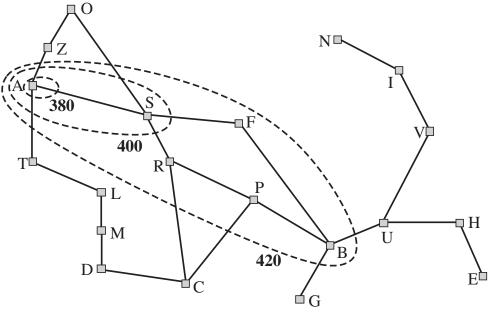
15781 Fall 2016: Lecture 4

OPTIMALITY OF A*, REVISITED

- Theorem: A* graph search with a consistent heuristic returns an optimal solution
- Proof:
 - Whenever A^* selects a state x for expansion, the optimal path to x has been found. Otherwise, there would a frontier node y(separation property) on the optimal path from start to x that should be expanded first because f is non decreasing along any path (monotonicity)
 - The first goal state x^* selected for expansion must be optimal, because $f(x^*)$ is the true (optimal) cost for goal nodes $(h(x^*) = 0)$, and any other later goal node would be at least as expensive because of f monotonicity

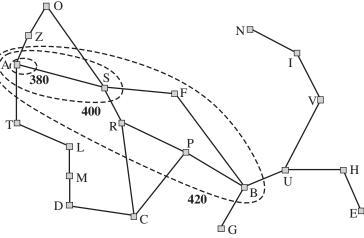
CONTOURS IN THE STATE SPACE

- *f*-costs are nondecreasing along any path from the start \rightarrow Contours (isolines) in the state-space, like in topographic maps
- A* search fans out adding nodes in circoncentric bands of increasing *f*-cost
- The tight the LB bounds are, the more the bands will stretch toward the goal state
- Bands using UCS?



15781 Fall 2016: Lecture 4

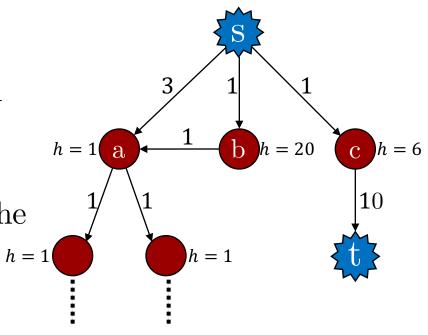
PRUNING AND COMPLETENESS



- If C^* is the cost of the optimal path, A^* expands all nodes with $f(x) < C^*$, and no nodes with $f(x) > C^*$ (automatic pruning)
- A^* might expand some of the nodes on the goal contour, where $f(x) = C^*$, before selecting the goal node
- Completeness? Yes, if only a finitely many nodes with cost less or equal to C* are present (b is finite and all step costs are $\varepsilon > 0$)

A* IS OPTIMALLY EFFICIENT

- Theorem: Any algorithm that returns the optimal solution given a consistent heuristic will expand all nodes surely expanded by A*
- But this is not the case when the heuristic is only admissible



Alg B: Conduct exhaustive search except for expanding a; then expand a only if it has the potential to sprout cheaper solution

15781 Fall 2016: Lecture 4

SUMMARY

- Terminology:
 - Search problems
 - Algorithms: tree search, graph search, best-first search, uniform cost search, greedy, A*
 - Admissible and consistent heuristics
- Big ideas:
 - Properties of the heuristic $\Rightarrow A^*$ optimality
 - Don't be too pessimistic!
 - $_{\circ}$ Be consistent!

Projects

- Proposals to be submitted by October 24
- 1-2 pages stating:
 - Motivation
 - Goals
 - \circ Work plan
- 40 hours of work
- Can be done in pairs
- Poster presentation only, at the end of the semester