
CMU 15-781
Lecture 3:
Constraint Satisfaction
Problems (CSPs)

Teacher:
Gianni A. Di Caro

15781 Fall 2016: Lecture 3

OVERVIEW

• Definitions, toy and real-world examples
• Basic algorithms for solving CSPs
• Pruning space through propagating information

2

15781 Fall 2016: Lecture 3

CONSTRAINT SATISFACTION PROBLEMS (CSP)

• Set of decisionVariables: V = {V1,..,VN}
• Domains: Sets of Di possible values for each variable Vi
• Set of Constraints: C = {C1,..,CK} restricting the values the

variables can simultaneously take
• A constraint consists of:

o variable tuple
o list of possible values for tuple (ex.[(V2,V3),{(R,B),(R,G)}])
o Or functional relation (ex. V2 ≠V3, V1 > V4 + 5)

• Allows useful general-purpose algorithms with more power
than standard search algorithms

3

15781 Fall 2016: Lecture 3

EXAMPLE: N-QUEENS

4

• Domains:
• {1, …, 8}

• Constraints:
• No queen attack each other
• Qi ﹦ k ⇒ Qj ≠ k, ∀ j ﹦1,..8, j ≠ i
• Similar constraints for diagonals

• Variables:
• Qi position of queen in column i

Alternative formulation?

15781 Fall 2016: Lecture 3

EXAMPLE: MAP COLORING
Given n different colors, color a map so that adjacent areas
are different colors

5

15781 Fall 2016: Lecture 3

MAP COLORING: MATCH!
Constraints

Variables

Domain

Solutions

6

WA, NT, Q, NSW, V, T, SA

15781 Fall 2016: Lecture 3

EXAMPLE: SUDOKU

• Variables:
o Xij, each open square

• Domain:
o {1:9}

• Constraints:
o 9-way all diff col
o 9-way all diff row
o 9-way all diff box

7

15781 Fall 2016: Lecture 3

SCHEDULING (IMPORTANT EXAMPLE)
• Many industries. Many multi-million $ decisions. Used

extensively for space mission planning. Military uses.
• People really care about improving scheduling

algorithms! Problems with phenomenally huge state
spaces. But for which solutions are needed very quickly

• Many kinds of scheduling problems e.g.:
o Job shop: Discrete time; weird ordering of operations

possible; set of separate jobs.
o Batch shop: Discrete or continuous time; restricted

operation of ordering; grouping is important.

8

15781 Fall 2016: Lecture 3

JOB SCHEDULING
• A set of J jobs, J1,…, Jn
• A set of R resources, R1, R2, …, Rm to do the jobs
• Each job j is a sequence of operations Oj

1,..., Oj
Lj to be

scheduled according to process plans: Oj
1 ≺ Oj

2 ≺ Oj
3 ….

• Each operation has a fixed processing time and requires the
use of resources Ri, a resource can have capacity constraints

• Each job has a ready time and a due time
• A resource can only be used by a single operation at a time.
• All jobs must be completed by a due time.

• Problem: assign a start time to each job such that all jobs
are completed by their due times respecting all constraints

9

15781 Fall 2016: Lecture 3

JOB SCHEDULING

10

15781 Fall 2016: Lecture 3

CLASS SCHEDULING WOES
• 4 more required classes to graduate

o A: Algorithms B: Bayesian Learning
o C: Computer Programming D: Distributed Computing

• A few restrictions
o Algorithms must be taken same semester as Distributed computing
o Computer programming is a prereq for Distributed computing and

Bayesian learning, so it must be taken in an earlier semester
o Advanced algorithms and Bayesian Learning are always offered at

the same time, so they cannot be taken the same semester
• 3 semesters (semester 1,2,3) when can take classes

11

15781 Fall 2016: Lecture 3

EXERCISE: DEFINE CSP
• 4 more required classes to graduate: A, B, C, D
• A must be taken same semester as D
• C is a prereq for D and B so must take C earlier than

D & B
• A & B are always offered at the same time, so they

cannot be taken the same semester
• 3 semesters (semester 1,2,3) when can take classes

12

15781 Fall 2016: Lecture 3

EXERCISE: DEFINE CSP
• 4 more required classes to graduate: A, B, C, D
• A must be taken same semester as D
• C is a prereq for D and B so must take C earlier than

D & B
• A & B are always offered at the same time, so they

cannot be taken the same semester
• 3 semesters (semester 1,2,3) when can take classes
• Variables: A,B,C,D
• Domain: {1,2,3}
• Constraints: A ≠ B, A=D, C < B, C < D

13

15781 Fall 2016: Lecture 3

TYPES OF CSPS
• Discrete-domain variables

o Finite domains (Map coloring, Sudoku, N-queens, SAT)
➔ Our focus!

o Infinite domains (Integers or strings, deadline-free JSS)
Constraint language is needed to understand relations

J1+d1 ≤ J2 without enumerating all tuples
Integer programming methods deal effectively with

(integer, binary) problems with linear constraints

• Continuous variables (planning, blending, positioning,…)
o Linear/convex programming for linear/convex constraints

14

15781 Fall 2016: Lecture 3

TYPES OF CONSTRAINTS

• Unary: involve a single variable
• Binary: involve two variables
• n-ary: involve n variables
• Soft constraints: violation incurs a cost, the problem

becomes a constraint optimization one

15

15781 Fall 2016: Lecture 3

CONSTRAINT GRAPH
• Variables ➔ Vertices
• Constraints ➔ Edges

o Unary: Self-edges
o Binary: regular edges
o n-ary: hyperedges (hypergraphs)

16

A < 2

A B

C
A > C B ≠ C

WA

NT

SA

Q

NS
W

V

T

F T U W R O

C3 C2 C1

15781 Fall 2016: Lecture 3

CRYPTARITHMETIC PUZZLES

17

TWO
TWO =

FOU R

+
F T U W R O

C3 C2 C1

100(O+O) + 101(W+W)+102(T+T) = 100R+101U+102O+103F

V = {O,W,T,R,U,F}
D = {0, …, 9}

{O+O = R+10C1, C1+W+W=U+10C2, C2+T+T=O+10C3, C3 = F}

V = {O,W,T,R,U,F, C1, C2, C3} Auxiliary vars

15781 Fall 2016: Lecture 3

BINARY CONSTRAINT GRAPHS

18

It’s always possible to reduce a hypergraph to
a binary constraint graph!

But this is not always the best thing to do ….

On the Conversion between Non-Binary and Binary Constraint Satisfaction Problems.
Bacchus, F. and van Beek, P. InProceedings of the 15th AAAI Conference on Artificial
Intelligence (AAAI-1998), pages 310-318, 1998.

If you want to know more …

15781 Fall 2016: Lecture 3

OVERVIEW

• Definitions, toy and real-world examples
• Basic algorithms for solving CSPs
• Pruning space through propagating information

19

15781 Fall 2016: Lecture 3

WHY NOT JUST DO BASIC SEARCH
ALGORITHMS FROM LAST TIME?

• States: Partial assignments to the n variables
• Initial state: Empty state
• Action: Select an unassigned variable i and assign a

feasible value from its domain Di to it
• Goal test: Assignnent consistent (no violations) and

complete (all variables assigned)
• Step cost: Constant
• Solution is found at depth n, using depth-limited DFS
• Size of the search tree?

20

15781 Fall 2016: Lecture 3

WHY NOT JUST DO BASIC SEARCH
ALGORITHMS FROM LAST TIME?

21

n = 4 variables each taking d = 4 values

Generate a search tree of n!dn but there are only dn possible assignments!

b = nd

b=(n-1)d

Figure from Barbara J. Grosz

15781 Fall 2016: Lecture 3

COMMUTATIVITY!
• The order of assigning the variables has no effect on

the final outcome
• CSPs are commutative: Regardless of the assignment

order, the same partial solution is reached for a defined
set of assignment values

• Don’t care about path!
• ➔ Only a single variable at each node in the search

tree needs to be considered!! (can fix the order)
• ➔ dn number of leaves in the search tree!

22

15781 Fall 2016: Lecture 3

BACKTRACKING: DFS WITH SINGLE
VARIABLE ASSIGNMENTS

• Only consider a single variable at each point
• Don’t care about path
• Order of variable assignment doesn’t matter, so fix ordering
• Only consider values which do not conflict with assignment

made so far
• Depth-first search for CSPs with these two improvements is

called backtracking search

23

15781 Fall 2016: Lecture 3

BACKTRACKING
• Function Backtracking(csp) returns solution or fail

o Return Backtrack({},csp)
• Function Backtrack(assignment,csp) returns solution or fail

o If assignment is complete, return assignment
o Vi ß select_unassigned_var(csp)
o For each val in order-domain-values(var, csp, assign)

If value is consistent with assignment
Add [Vi = val] to assignment
Result ß Backtrack(assignment, csp)
If Result ≠ fail, return result

Remove [Vi = val] from assignments
o Return fail

24

15781 Fall 2016: Lecture 3

BACKTRACKING
• Function Backtracking(csp) returns soln or fail

o Return Backtrack({},csp)
• Function Backtrack(assignment,csp) returns soln or fail

o If assignment is complete, return assignment
o Viß select_unassigned_var(csp)
o For each val in order-domain-values(var,csp,assign)

If value is consistent with assignment
Add [Vi = val] to assignment
Result ß Backtrack(assignment,csp)
If Result ≠ fail, return result

Remove [Vi = val] from assignments
o Return fail

25

15781 Fall 2016: Lecture 3

THINK AND DISCUSS

• Does the variable/value order used affect how long
backtracking takes to find a solution?

• Does the variable/value order used affect the solution
found by backtracking?

26

15781 Fall 2016: Lecture 3

EXAMPLE
VARIABLES: A,B,C,D DOMAIN: {1,2,3}
CONSTRAINTS: A ≠ B, A=D, C < B, C < D

VARIABLE ORDER: ALPHABETICAL VALUE ORDER: DESCENDING

• (A=3)

27

15781 Fall 2016: Lecture 3

EXAMPLE
VARIABLES: A,B,C,D DOMAIN: {1,2,3}
CONSTRAINTS: A ≠ B, A=D, C < B, C < D

VARIABLE ORDER: ALPHABETICAL VALUE ORDER: DESCENDING

• (A=3)
• (A=3, B=3) inconsistent with A ≠ B
• (A=3, B=2)
• (A=3, B=2, C=3) inconsistent with C < B
• (A=3, B=2, C=2) inconsistent with C < B
• (A=3, B=2, C=1)
• (A=3, B=2, C=1,D=3) VALID

28

15781 Fall 2016: Lecture 3

EXAMPLE
VARIABLES: A,B,C,D DOMAIN: {1,2,3}
CONSTRAINTS: A ≠ B, A=D, C < B, C < D

VARIABLE ORDER: ALPHABETICAL VALUE ORDER: ASCENDING

• (A=1)

29

15781 Fall 2016: Lecture 3

EXAMPLE
VARIABLES: A,B,C,D DOMAIN: {1,2,3}
CONSTRAINTS: A ≠ B, A=D, C < B, C < D

VARIABLE ORDER: ALPHABETICAL VALUE ORDER: ASCENDING

• (A=1)
• (A=1,B=1) inconsistent with A ≠ B
• (A=1,B=2)
• (A=1,B=2,C=1)
• (A=1,B=2,C=1,D=1) inconsistent with C < D
• (A=1,B=2,C=1,D=2) inconsistent with A=D
• (A=1,B=2,C=1,D=3) inconsistent with A=D

30

15781 Fall 2016: Lecture 3

EXAMPLE
VARIABLES: A,B,C,D DOMAIN: {1,2,3}
CONSTRAINTS: A ≠ B, A=D, C < B, C < D

VARIABLE ORDER: ALPHABETICAL VALUE ORDER: ASCENDING

31

§ (A=1)
§ (A=1,B=1) inconsistent with A ≠ B
§ (A=1,B=2)
§ (A=1,B=2,C=1)
§ (A=1,B=2,C=1,D=1) inconsistent with C < D
§ (A=1,B=2,C=1,D=2) inconsistent with A=D
§ (A=1,B=2,C=1,D=3) inconsistent with A=D
§ No valid assignment for D, return result = fail

§ Backtrack to (A=1,B=2,C=)
§ Try (A=1,B=2,C=2) but inconsistent with C < B
§ Try (A=1,B=2,C=3) but inconsistent with C < B
§ No other assignments for C, return result= fail

§ Backtrack to (A=1,B=)
§ (A=1,B=3)
§ (A=1,B=3,C=1)
§ (A=1,B=3,C=1,D=1) inconsistent with C < D
§ (A=1,B=3,C=1,D=2) inconsistent with A = D
§ (A=1,B=3,C=1,D=3) inconsistent with A = D
§ Return result = fail

§ Backtrack to (A=1,B=3,C=)

§ (A=1,B=3,C=2) inconsistent with C < B
§ (A=1,B=3,C=3) inconsistent with C < B
§ No remaining assignments for C, return fail

§ Backtrack to (A=1,B=)
§ No remaining assignments for B, return fail

§ Backtrack to A
§ (A=2)
§ (A=2,B=1)
§ (A=2,B=1,C=1) inconsistent with C < B
§ (A=2,B=1,C=2) inconsistent with C < B
§ (A=2,B=1,C=3) inconsistent with C < B
§ No remaining assignments for C, return fail

§ Backtrack to (A=2,B=?)
§ (A=2,B=2) inconsistent with A ≠ B
§ (A=2,B=3)
§ (A=2,B=3,C=1)
§ (A=2,B=3,C=1,D=1) inconsistent with C < D
§ (A=2,B=3,C=1,D=2) ALL VALID

15781 Fall 2016: Lecture 3

ORDERING MATTERS!
• Function Backtracking(csp) returns soln or fail

o Return Backtrack({},csp)
• Function Backtrack(assignment,csp) returns soln or fail

o If assignment is complete, return assignment
o Viß select_unassigned_var(csp)
o For each val in order-domain-values(var,csp,assign)

If value is consistent with assignment
Add [Vi = val] to assignment
Result ß Backtrack(assignment,csp)
If Result ≠ fail, return result

Remove [Vi = val] from assignments
o Return fail

32

15781 Fall 2016: Lecture 3

ORDERING HEURISTICS
• Next variable?

o Random or static
o Variable with the fewest legal values: Minimum remaining

values (MRV) heuristic (aka the most constrained var, the
fail-first var)

o Variable with the largest number of constraints on other
unassigned variables, reduces b on future choices (Degree
heuristic)

• Variable’s value?
o Value that leaves most choices for the neighboring variables

in the constraint graph, max flexibility (least-constraining-
value heuristic), fail-last

33

15781 Fall 2016: Lecture 3

(TEST) COST OF BACKTRACKING?
• d values per variable
• n variables
• Possible number of CSP assignments?

• A) O(dn)
• B) O(nd)
• C) O(nd)

34

15781 Fall 2016: Lecture 3

OVERVIEW

• Real world CSPs
• Basic algorithms for solving CSPs
• Pruning space through propagating information

35

15781 Fall 2016: Lecture 3

LIMITATIONS OF BACKTRACKING

36

• Can inevitable failure be detected earlier?
• Can problem structure can be exploited?
• Can the search space be reduced to speed up computation?

15781 Fall 2016: Lecture 3

PROPAGATE INFORMATION

37

• If we choose a value for one variable, that affects its neighbors
• And then potentially those neighbors…
• We can use this inference to prune the search space.

15781 Fall 2016: Lecture 3

ARC CONSISTENCY
• Definition:

o An “arc” (connection between two variables X à Y in
constraint graph) is consistent if:

o For every value could assign to X
There exists some value of Y that could be
assigned without violating a constraint

38

If a variable is not arc consistent with another one, it can be
made so by removing some values from its domain. This can be
done recursively à Form of constraint propagation that
enforces arc consistency, maintains the problem solutions, and
prunes the tree!

15781 Fall 2016: Lecture 3

ARC CONSISTENCY IN PRACTICE

39

(To-Do-Arcs)

Example from Kevin Leyton-Brown

15781 Fall 2016: Lecture 3

AC-3 COMPUTATIONAL COMPLEXITY?
• Input: CSP
• Output: CSP, possible with reduced domains for variables, or inconsistent
• Local variables: queue, initially queue of all arcs (binary constraints in csp)
• While queue is not empty
• (Xi,Xj) = Remove-First(queue)
• [domainXi, anyChangeToDomainXi] = Revise(csp,Xi,Xj)
• if anyChangeToDomainXi == true
• if size(domainXi) = 0, return inconsistent
• else
• for each Xk in Neighbors(Xi) except Xj

• add (Xk,Xi) to queue
• Return csp
• ---
• Function Revise(csp,Xi,Xj) returns DomainXi and anyChangeToDomainXi

• anyChangeToDomainXi= false
• for each x in Domain(Xi)
• if no value y in Domain(Xj) allows (x,y) to satisfy constraint between (Xi,Xj)
• delete x from Domain(Xi)
• anyChangeToDomainXi= true

40

Have to add in arc for
(Xi,Xj) and (Xj,Xi)
for i,j constraint

D domain values
C binary constraints

Complexity of revise
function? D2

Number of times can
put a constraint in

queue?
D

Total:
CD3

15781 Fall 2016: Lecture 3

(TEST) SUFFICIENT?
• After we run AC-3 have we always found a solution?

(aka only 1 value left for each variable)

• A) Yes
• B) No

41

15781 Fall 2016: Lecture 3

AC-3 EXAMPLE
• Variables: A,B,C,D
• Domain: {1,2,3}
• Constraints: A ≠ B, C < B, C < D (subset of constraints from

before)

42

15781 Fall 2016: Lecture 3

AC-3 EXAMPLE
• Variables: A,B,C,D
• Domain: {1,2,3}
• Constraints: A ≠ B, C < B, C < D (subset of constraints from

before)
• Constraints both ways: A≠ B, B≠ A, C < B, B > C, C < D, D > C

43

15781 Fall 2016: Lecture 3

AC-3 EXAMPLE
• Variables: A,B,C,D
• Domain: {1,2,3}
• Constraints: A ≠ B, C < B, C < D (subset of constraints from

before)
• Constraints both ways: A≠ B, B≠ A, C < B, B > C, C < D, D > C
• Queue: AB, BA, BC, CB, CD, DC

44

15781 Fall 2016: Lecture 3

AC-3 EXAMPLE
• Variables: A,B,C,D
• Domain: {1,2,3}
• Constraints: A ≠ B, C < B, C < D (subset of constraints from

before)
• Constraints both ways: A≠ B, B≠ A, C < B, B > C, C < D, D > C
• Queue: AB, BA, BC, CB, CD, DC
• Pop AB:
• for each x in Domain(A)

if no value y in Domain(B) that allows (x,y) to satisfy
constraint between (A,B)

delete x from Domain(A)
• No change to domain of A

45

15781 Fall 2016: Lecture 3

AC-3 EXAMPLE
• Variables: A,B,C,D
• Domain: {1,2,3}
• Constraints: A ≠ B, C < B, C < D (subset of constraints from

before)
• Constraints both ways: A≠ B, B≠ A, C < B, B > C, C < D, D > C
• Queue: AB, BA, BC, CB, CD, DC
• Pop AB
• Queue: BA, BC, CB, CD, DC

46

15781 Fall 2016: Lecture 3

AC-3 EXAMPLE
• Variables: A,B,C,D
• Domain: {1,2,3}
• Constraints: A ≠ B, C < B, C < D (subset of constraints from

before)
• Constraints both ways: A≠ B, B≠ A, C < B, B > C, C < D, D > C
• Queue: AB, BA, BC, CB, CD, DC
• Pop AB
• Queue: BA, BC, CB, CD, DC
• Pop BA
• for each x in Domain(B)

if no value y in Domain(A) that allows (x,y) to satisfy
constraint between (B,A)

delete x from Domain(B)
• No change to domain of B

47

15781 Fall 2016: Lecture 3

AC-3 EXAMPLE
• Variables: A,B,C,D
• Domain: {1,2,3}
• Constraints: A ≠ B, C < B, C < D (subset of constraints from

before)
• Constraints both ways: A≠ B, B≠ A, C < B, B > C, C < D, D > C
• Queue: AB, BA, BC, CB, CD, DC
• Queue: BA, BC, CB, CD, DC
• Queue: BC, CB, CD, DC
• Pop BC
• for each x in Domain(B)

o if no value y in Domain(C) that allows (x,y) to satisfy constraint between (B,C)
o delete x from Domain(B)

• If B is 1, constraint B >C cannot be satisfied. So delete 1 from B’s domain, B={2,3}
• Also have to add neighbors of B (except C) back to queue: AB
• Queue: AB, CB, CD, DC

48

15781 Fall 2016: Lecture 3

AC-3 EXAMPLE
• Queue: AB, BA, BC, CB, CD, DC A-D = {1,2,3}
• Queue: BA, BC, CB, CD, DC A-D = {1,2,3}
• Queue: BC, CB, CD, DC A-D = {1,2,3}
• Queue: AB, CB, CD, DC B={2,3}, A/C/D = {1,2,3}
• Pop AB

o For every value of A is there a value of B such that A ≠ B?
o Yes, so no change

49

Variables: A,B,C,D
Domain: {1,2,3}
Constraints: A ≠ B, C < B, C < D

15781 Fall 2016: Lecture 3

AC-3 EXAMPLE
• Queue: AB, BA, BC, CB, CD, DC, A-D = {1,2,3}
• Queue: BA, BC, CB, CD, DC A-D = {1,2,3}
• Queue: BC, CB, CD, DC A-D = {1,2,3}
• Queue: AB, CB, CD, DC B={2,3}, A/C/D = {1,2,3}
• Queue: CB, CD, DC B={2,3}, A/C/D = {1,2,3}
• Pop CB

o For every value of C is there a value of B such that C < B
o If C = 3, no value of B that fits
o So delete 3 from C’s domain, C = {1,2}
o Also have to add neighbors of C (except B) back to queue: no change

because already in

50

Variables: A,B,C,D
Domain: {1,2,3}
Constraints: A ≠ B, C < B, C < D

15781 Fall 2016: Lecture 3

AC-3 EXAMPLE
• Queue: AB, BA, BC, CB, CD, DC, A-D = {1,2,3}
• Queue: BA, BC, CB, CD, DC A-D = {1,2,3}
• Queue: BC, CB, CD, DC A-D = {1,2,3}
• Queue: AB, CB, CD, DC B={2,3}, A/C/D = {1,2,3}
• Queue: CB, CD, DC B={2,3}, A/C/D = {1,2,3}
• Queue: CD, DC B={2,3}, C = {1,2} A,D = {1,2,3}
• Pop CD

o For every value of C, is there a value of D such that C < D?
o Yes, so no change

51

Variables: A,B,C,D
Domain: {1,2,3}
Constraints: A ≠ B, C < B, C < D

15781 Fall 2016: Lecture 3

AC-3 EXAMPLE
• Queue: AB, BA, BC, CB, CD, DC A-D = {1,2,3}
• Queue: BA, BC, CB, CD, DC A-D = {1,2,3}
• Queue: BC, CB, CD, DC A-D = {1,2,3}
• Queue: AB, CB, CD, DC B={2,3}, A/C/D = {1,2,3}
• Queue: CB, CD, DC B={2,3}, A/C/D = {1,2,3}
• Queue: CD, DC B={2,3}, C = {1,2} A,D = {1,2,3}
• Queue: DC B={2,3}, C = {1,2} A,D = {1,2,3}
• For every value of D is there a value of C such that D > C?

o Not if D = 1
o So D = {2,3}

52

Variables: A,B,C,D
Domain: {1,2,3}
Constraints: A ≠ B, C < B, C < D

15781 Fall 2016: Lecture 3

AC-3 EXAMPLE
• Queue: AB, BA, BC, CB, CD, DC A-D = {1,2,3}
• Queue: BA, BC, CB, CD, DC A-D = {1,2,3}
• Queue: BC, CB, CD, DC A-D = {1,2,3}
• Queue: AB, CB, CD, DC B={2,3}, A/C/D = {1,2,3}
• Queue: CB, CD, DC B={2,3}, A/C/D = {1,2,3}
• Queue: CD, DC B={2,3}, C = {1,2} A,D = {1,2,3}
• Queue: DC B={2,3}, C = {1,2} A,D = {1,2,3}
• A = {1,2,3} B={2,3}, C = {1,2} D = {2,3}

53

Variables: A,B,C,D
Domain: {1,2,3}
Constraints: A ≠ B, C < B, C < D

15781 Fall 2016: Lecture 3

FORWARD CHECKING

• AC-3 can ran before the search begins to prune search tree; it
operates on the entire search tree (expensive!)

• It’s a form of inference (inferring reductions)
• What if, instead, we make inference at run-time?
• Forward checking: When assign a variable, make all of its

neighbors arc-consistent (purely local)

54

15781 Fall 2016: Lecture 3

BACKTRACKING + FORWARD CHECKING
• Function Backtrack(assignment,csp) returns soln or fail

o If assignment is complete, return assignment
o Viß select_unassigned_var(csp)
o For each val in order-domain-values(var,csp,assign)

If value is consistent with assignment
Add [Vi = val] to assignment
Make domains of all neighbors of Vi arc-consistent with [Vi = val]
Result ß Backtrack(assignment,csp)
If Result ≠ fail, return result

Remove [Vi = val] from assignments
o Return fail

• Note: When backtracking, domains must be restored

55

15781 Fall 2016: Lecture 3

MAINTAINING ARC CONSISTENCY

• Forward checking doesn’t ensure all arcs are consistent, only
the local ones, no look-ahead

• AC-3 can detect failure faster than forward checking
• The MAC algorithm includes AC-3 in the search, executing

it from the arcs of the locally unassigned variables
• What’s the downside? Computation

56

15781 Fall 2016: Lecture 3

MAINTAINING ARC CONSISTENCY (MAC)
• Function Backtrack(assignment,csp) returns soln or fail

o If assignment is complete, return assignment
o Viß select_unassigned_var(csp)
o For each val in order-domain-values(var,csp,assign)

If value is consistent with assignment
Add [Vi = val] to assignment
Run AC-3 to make all variables arc-consistent with [Vi = val].

Initial queue is arcs (Xj,Vi) of neighbors of Vi that are
unassigned, but add other arcs if these vars change domains.

Result ß Backtrack(assignment,csp)
If Result ≠ fail, return result

Remove [Vi = val] from assignments
o Return fail

57

15781 Fall 2016: Lecture 3

(TEST) SUFFICIENT TO AVOID
BACKTRACKING?

• If we maintain arc consistency, we will never have to
backtrack while solving a CSP

• A) True
• B) False

58

15781 Fall 2016: Lecture 3

AC LIMITATIONS

• After running AC-3
o Can have one solution left
o Can have multiple solutions left
o Can have no solutions left (and not know it)

59

What went
wrong here?

Arc-consistent but
no feasible assignment

15781 Fall 2016: Lecture 3

COMPLEXITY

• CSPs in general are NP-complete
• Valued, optimization version of CSPs are usually NP-hard
• Some structured domains, like those with a constraint

tree, are easier and can be solved in polynomial time

60

15781 Fall 2016: Lecture 3

CONSTRAINT TREES

61

• Constraint tree
o Any 2 variables in constraint graph connected by <= 1 path

• Can be solved in time linear in # of variables

Figure from Russell & Norvig

15781 Fall 2016: Lecture 3

1) Choose any var as root and order vars such that every var’s
parents in constraint graph precede it in ordering

2) Let Xi be the parent of Xj in the new ordering
3) For j=n:2, run arc consistency to arc (Xi,Xj)
4) For j=1:n, assign val for Xj consistent w/val assigned for Xi

ALGORTHM FOR CSP TREES

62Figure from Russell & Norvig

15781 Fall 2016: Lecture 3

1) Choose any var as root and order vars such that every
var’s parents in constraint graph precede it in ordering

2) Let Xi be the parent of Xj in the new ordering
3) For j=n:2, run arc consistency to arc (Xi,Xj)
4) For j=1:n, assign val for Xj consistent w/val assigned for

Xi

COMPUTATIONAL COMPLEXITY?

63Figure from Russell & Norvig

15781 Fall 2016: Lecture 3

SUMMARY

• Be able to define real world CSPs
• Understand basic algorithm (backtracking)

o Complexity relative to basic search algorithms
o Doesn’t require problem specific heuristics
o Ideas shaping search (ordering heuristics)

• Pruning space through propagating information
o Arc consistency
o Tradeoffs: + reduces search space, - computation costs

• Computational complexity and special cases (tree)
• Relevant reading: R&N Chapter 6

64

