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OVERVIEW

• Definitions, toy and real-world examples
• Basic algorithms for solving CSPs
• Pruning space through propagating information
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CONSTRAINT SATISFACTION PROBLEMS (CSP)

• Set of decisionVariables: V = {V1,..,VN}
• Domains: Sets of Di possible values for each variable Vi
• Set of Constraints: C = {C1,..,CK} restricting the values the 

variables can simultaneously take
• A constraint consists of:

o variable tuple
o list of possible values for tuple (ex.[(V2,V3),{(R,B),(R,G)}])
o Or functional relation (ex. V2 ≠V3, V1 > V4 + 5)

• Allows useful general-purpose algorithms with more power 
than standard search algorithms
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EXAMPLE: N-QUEENS

4

• Domains:
• {1, …, 8}

• Constraints:
• No queen attack each other
• Qi ﹦ k ⇒ Qj ≠ k, ∀ j ﹦1,..8, j ≠ i
• Similar constraints for diagonals

• Variables:
• Qi position of queen in column i

Alternative formulation?
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EXAMPLE: MAP COLORING
Given n different colors, color a map so that adjacent areas 
are different colors
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MAP COLORING: MATCH!
Constraints

Variables 

Domain

Solutions
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WA, NT, Q, NSW, V, T, SA
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EXAMPLE: SUDOKU

• Variables:
o Xij, each open square

• Domain:
o {1:9}

• Constraints:
o 9-way all diff col
o 9-way all diff row
o 9-way all diff box
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SCHEDULING (IMPORTANT EXAMPLE)
• Many industries. Many multi-million $ decisions. Used 

extensively for space mission planning. Military uses.
• People really care about improving scheduling 

algorithms! Problems with phenomenally huge state 
spaces. But for which solutions are needed very quickly

• Many kinds of scheduling problems e.g.:
o Job shop: Discrete time; weird ordering of operations 

possible; set of separate jobs.
o Batch shop: Discrete or continuous time; restricted 

operation of ordering; grouping is important.
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JOB SCHEDULING
• A set of J jobs, J1,…, Jn
• A set of R resources, R1, R2, …, Rm   to do the jobs
• Each job j is a sequence of operations Oj

1,..., Oj
Lj to be 

scheduled according to process plans: Oj
1 ≺ Oj

2 ≺ Oj
3 ….

• Each operation has a fixed processing time and requires the 
use of resources Ri, a resource can have capacity constraints

• Each job has a ready time and a due time
• A resource can only be used by a single operation at a time.
• All jobs must be completed by a due time.

• Problem: assign a start time to each job such that all jobs 
are completed by their due times respecting all constraints
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JOB SCHEDULING
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CLASS SCHEDULING WOES
• 4 more required classes to graduate

o A: Algorithms B: Bayesian Learning
o C: Computer Programming D: Distributed Computing

• A few restrictions
o Algorithms must be taken same semester as Distributed computing
o Computer programming is a prereq for Distributed computing and 

Bayesian learning, so it must be taken in an earlier semester
o Advanced algorithms and Bayesian Learning are always offered at 

the same time, so they  cannot be taken the same semester
• 3 semesters (semester 1,2,3) when can take classes
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EXERCISE: DEFINE CSP
• 4 more required classes to graduate: A, B, C, D
• A must be taken same semester as D
• C is a prereq for D and B so must take C earlier than 

D & B
• A & B are always offered at the same time, so they 

cannot be taken the same semester
• 3 semesters (semester 1,2,3) when can take classes
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EXERCISE: DEFINE CSP
• 4 more required classes to graduate: A, B, C, D
• A must be taken same semester as D
• C is a prereq for D and B so must take C earlier than 

D & B
• A & B are always offered at the same time, so they 

cannot be taken the same semester
• 3 semesters (semester 1,2,3) when can take classes
• Variables: A,B,C,D
• Domain: {1,2,3}
• Constraints: A ≠ B, A=D, C < B, C < D 
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TYPES OF CSPS
• Discrete-domain variables

o Finite domains (Map coloring, Sudoku, N-queens, SAT) 
➔ Our focus!

o Infinite domains (Integers or strings, deadline-free JSS)
Constraint language is needed to understand relations 

J1+d1 ≤ J2 without enumerating all tuples
Integer programming methods deal effectively with 

(integer, binary) problems with linear constraints 

• Continuous variables (planning, blending, positioning,…)
o Linear/convex programming for linear/convex constraints
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TYPES OF CONSTRAINTS

• Unary: involve a single variable
• Binary: involve two variables
• n-ary: involve n variables
• Soft constraints: violation incurs a cost, the problem 

becomes a constraint optimization one
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CONSTRAINT GRAPH
• Variables ➔ Vertices
• Constraints ➔ Edges

o Unary: Self-edges
o Binary: regular edges
o n-ary: hyperedges (hypergraphs)
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CRYPTARITHMETIC PUZZLES
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TWO
TWO =

FOU R

+
F T U W R O

C3 C2 C1

100(O+O) + 101(W+W)+102(T+T) = 100R+101U+102O+103F

V = {O,W,T,R,U,F} 
D = {0, …, 9}

{O+O = R+10C1, C1+W+W=U+10C2, C2+T+T=O+10C3, C3 = F}

V = {O,W,T,R,U,F, C1, C2, C3} Auxiliary vars
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BINARY CONSTRAINT GRAPHS
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It’s always possible to reduce a hypergraph to 
a binary constraint graph!

But this is not always the best thing to do ….

On the Conversion between Non-Binary and Binary Constraint Satisfaction Problems.
Bacchus, F. and van Beek, P. InProceedings of the 15th AAAI Conference on Artificial 
Intelligence (AAAI-1998), pages 310-318, 1998.

If you want to know more …



15781 Fall 2016: Lecture 3

OVERVIEW

• Definitions, toy and real-world examples
• Basic algorithms for solving CSPs
• Pruning space through propagating information
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WHY NOT JUST DO BASIC SEARCH
ALGORITHMS FROM LAST TIME?

• States: Partial assignments to the n variables
• Initial state: Empty state
• Action: Select an unassigned variable i and assign a 

feasible value from its domain Di to it
• Goal test: Assignnent consistent (no violations) and 

complete (all variables assigned)
• Step cost: Constant
• Solution is found at depth n, using depth-limited DFS
• Size of the search tree?
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WHY NOT JUST DO BASIC SEARCH
ALGORITHMS FROM LAST TIME?
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n = 4 variables each taking d = 4 values

Generate a search tree of n!dn but there are only dn possible assignments!

b = nd

b=(n-1)d

Figure from Barbara J. Grosz
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COMMUTATIVITY!
• The order of assigning the variables has no effect on 

the final outcome
• CSPs are commutative: Regardless of the assignment 

order, the same partial solution is reached for a defined 
set of assignment values

• Don’t care about path!
• ➔ Only a single variable at each node in the search 

tree needs to be considered!! (can fix the order)
• ➔ dn number of leaves in the search tree!
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BACKTRACKING: DFS WITH SINGLE
VARIABLE ASSIGNMENTS

• Only consider a single variable at each point
• Don’t care about path
• Order of variable assignment doesn’t matter, so fix ordering
• Only consider values which do not conflict with assignment 

made so far
• Depth-first search for CSPs with these two improvements is 

called backtracking search

23



15781 Fall 2016: Lecture 3

BACKTRACKING
• Function Backtracking(csp) returns solution or fail

o Return Backtrack({},csp)
• Function Backtrack(assignment,csp) returns solution or fail

o If assignment is complete, return assignment
o Vi ß select_unassigned_var(csp)
o For each val in order-domain-values(var, csp, assign)

If value is consistent with assignment
Add [Vi = val] to assignment
Result ß Backtrack(assignment, csp)
If Result ≠ fail, return result

Remove [Vi = val] from assignments
o Return fail

24
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BACKTRACKING
• Function Backtracking(csp) returns soln or fail

o Return Backtrack({},csp)
• Function Backtrack(assignment,csp) returns soln or fail

o If assignment is complete, return assignment
o Viß select_unassigned_var(csp)
o For each val in order-domain-values(var,csp,assign)

If value is consistent with assignment
Add [Vi = val] to assignment
Result ß Backtrack(assignment,csp)
If Result ≠ fail, return result

Remove [Vi = val] from assignments
o Return fail
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THINK AND DISCUSS

• Does the variable/value order used affect how long 
backtracking takes to find a solution?

• Does the variable/value order used affect the solution 
found by backtracking?
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EXAMPLE
VARIABLES: A,B,C,D DOMAIN: {1,2,3}
CONSTRAINTS: A ≠ B, A=D, C < B, C < D 

VARIABLE ORDER: ALPHABETICAL VALUE ORDER: DESCENDING

• (A=3)

27
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EXAMPLE
VARIABLES: A,B,C,D DOMAIN: {1,2,3}
CONSTRAINTS: A ≠ B, A=D, C < B, C < D 

VARIABLE ORDER: ALPHABETICAL VALUE ORDER: DESCENDING

• (A=3)
• (A=3, B=3) inconsistent with A ≠ B
• (A=3, B=2)
• (A=3, B=2, C=3) inconsistent with C < B
• (A=3, B=2, C=2) inconsistent with C < B
• (A=3, B=2, C=1)
• (A=3, B=2, C=1,D=3) VALID
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EXAMPLE
VARIABLES: A,B,C,D DOMAIN: {1,2,3}
CONSTRAINTS: A ≠ B, A=D, C < B, C < D 

VARIABLE ORDER: ALPHABETICAL VALUE ORDER: ASCENDING

• (A=1)
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EXAMPLE
VARIABLES: A,B,C,D DOMAIN: {1,2,3}
CONSTRAINTS: A ≠ B, A=D, C < B, C < D 

VARIABLE ORDER: ALPHABETICAL VALUE ORDER: ASCENDING

• (A=1)
• (A=1,B=1) inconsistent with A ≠ B
• (A=1,B=2)
• (A=1,B=2,C=1)
• (A=1,B=2,C=1,D=1) inconsistent with C < D
• (A=1,B=2,C=1,D=2) inconsistent with A=D
• (A=1,B=2,C=1,D=3) inconsistent with A=D

30
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EXAMPLE
VARIABLES: A,B,C,D DOMAIN: {1,2,3}
CONSTRAINTS: A ≠ B, A=D, C < B, C < D 

VARIABLE ORDER: ALPHABETICAL VALUE ORDER: ASCENDING

31

§ (A=1)
§ (A=1,B=1) inconsistent with A ≠ B
§ (A=1,B=2)
§ (A=1,B=2,C=1)
§ (A=1,B=2,C=1,D=1) inconsistent with C < D
§ (A=1,B=2,C=1,D=2) inconsistent with A=D
§ (A=1,B=2,C=1,D=3) inconsistent with A=D
§ No valid assignment for D, return result = fail

§ Backtrack to (A=1,B=2,C=)
§ Try (A=1,B=2,C=2) but inconsistent with C < B
§ Try (A=1,B=2,C=3) but inconsistent with C < B
§ No other assignments for C, return result= fail

§ Backtrack to (A=1,B=)
§ (A=1,B=3)
§ (A=1,B=3,C=1)
§ (A=1,B=3,C=1,D=1) inconsistent with C < D
§ (A=1,B=3,C=1,D=2) inconsistent with A = D
§ (A=1,B=3,C=1,D=3) inconsistent with A = D
§ Return result = fail

§ Backtrack to (A=1,B=3,C=)

§ (A=1,B=3,C=2) inconsistent with C < B
§ (A=1,B=3,C=3) inconsistent with C < B
§ No remaining assignments for C, return fail

§ Backtrack to (A=1,B=)
§ No remaining assignments for B, return fail

§ Backtrack to A
§ (A=2)
§ (A=2,B=1)
§ (A=2,B=1,C=1) inconsistent with C < B
§ (A=2,B=1,C=2) inconsistent with C < B
§ (A=2,B=1,C=3) inconsistent with C < B
§ No remaining assignments for C, return fail

§ Backtrack to (A=2,B=?)
§ (A=2,B=2) inconsistent with A ≠ B
§ (A=2,B=3) 
§ (A=2,B=3,C=1)
§ (A=2,B=3,C=1,D=1) inconsistent with C < D
§ (A=2,B=3,C=1,D=2)     ALL VALID
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ORDERING MATTERS!
• Function Backtracking(csp) returns soln or fail

o Return Backtrack({},csp)
• Function Backtrack(assignment,csp) returns soln or fail

o If assignment is complete, return assignment
o Viß select_unassigned_var(csp)
o For each val in order-domain-values(var,csp,assign)

If value is consistent with assignment
Add [Vi = val] to assignment
Result ß Backtrack(assignment,csp)
If Result ≠ fail, return result

Remove [Vi = val] from assignments
o Return fail

32
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ORDERING HEURISTICS
• Next variable?

o Random or static
o Variable with the fewest legal values: Minimum remaining 

values (MRV) heuristic (aka the most constrained var, the 
fail-first var)

o Variable with the largest number of constraints on other 
unassigned variables, reduces b on future choices (Degree 
heuristic)

• Variable’s value?
o Value that leaves most choices for the neighboring variables 

in the constraint graph, max flexibility (least-constraining-
value heuristic), fail-last

33
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(TEST) COST OF BACKTRACKING?
• d values per variable
• n variables
• Possible number of CSP assignments?

• A) O(dn)
• B) O(nd)
• C) O(nd)

34
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OVERVIEW

• Real world CSPs 
• Basic algorithms for solving CSPs
• Pruning space through propagating information
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LIMITATIONS OF BACKTRACKING

36

• Can inevitable failure be detected earlier?
• Can problem structure can be exploited?
• Can the search space be reduced to speed up computation?
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PROPAGATE INFORMATION

37

• If we choose a value for one variable, that affects its neighbors
• And then potentially those neighbors…
• We can use this inference to prune the search space.
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ARC CONSISTENCY
• Definition:

o An “arc” (connection between two variables X à Y in 
constraint graph) is consistent if:

o For every value could assign to X
There exists some value of Y that could be 
assigned without violating a constraint

38

If a variable is not arc consistent with another one, it can be 
made so by removing some values from its domain. This can be 
done recursively à Form of constraint propagation that 
enforces arc consistency, maintains the problem solutions, and 
prunes the tree!
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ARC CONSISTENCY IN PRACTICE

39

(To-Do-Arcs)

Example from Kevin Leyton-Brown
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AC-3 COMPUTATIONAL COMPLEXITY?
• Input: CSP
• Output: CSP, possible with reduced domains for variables, or inconsistent
• Local variables: queue, initially queue of all arcs (binary constraints in csp)
• While queue is not empty
• (Xi,Xj) = Remove-First(queue)
• [domainXi, anyChangeToDomainXi] = Revise(csp,Xi,Xj) 
• if anyChangeToDomainXi == true
• if size(domainXi) = 0, return inconsistent
• else
• for each Xk in Neighbors(Xi) except Xj

• add (Xk,Xi) to queue 
• Return csp
• ---------------------------------------------------------------------------------------------------
• Function Revise(csp,Xi,Xj)  returns DomainXi and anyChangeToDomainXi

• anyChangeToDomainXi= false
• for each x in Domain(Xi)
• if no value y in Domain(Xj) allows (x,y) to satisfy constraint between (Xi,Xj)
• delete x from Domain(Xi)
• anyChangeToDomainXi= true

40

Have to add in arc for 
(Xi,Xj) and (Xj,Xi)
for i,j constraint

D domain values
C binary constraints

Complexity of revise 
function?  D2

Number of times can 
put a constraint in 

queue?
D

Total:
CD3
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(TEST) SUFFICIENT? 
• After we run AC-3 have we always found a solution? 

(aka only 1 value left for each variable)

• A) Yes
• B) No

41
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AC-3 EXAMPLE
• Variables: A,B,C,D
• Domain: {1,2,3}
• Constraints: A ≠ B, C < B, C < D (subset of constraints from 

before)

42
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AC-3 EXAMPLE
• Variables: A,B,C,D
• Domain: {1,2,3}
• Constraints: A ≠ B, C < B, C < D (subset of constraints from 

before)
• Constraints both ways: A≠ B, B≠ A, C < B, B > C, C < D, D > C

43
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AC-3 EXAMPLE
• Variables: A,B,C,D
• Domain: {1,2,3}
• Constraints: A ≠ B, C < B, C < D (subset of constraints from 

before)
• Constraints both ways: A≠ B, B≠ A, C < B, B > C, C < D, D > C
• Queue: AB, BA, BC, CB, CD, DC

44
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AC-3 EXAMPLE
• Variables: A,B,C,D
• Domain: {1,2,3}
• Constraints: A ≠ B, C < B, C < D (subset of constraints from 

before)
• Constraints both ways: A≠ B, B≠ A, C < B, B > C, C < D, D > C
• Queue: AB, BA, BC, CB, CD, DC
• Pop AB:
• for each x in Domain(A)

if no value y in Domain(B) that allows (x,y) to satisfy          
constraint between (A,B)

delete x from Domain(A)
• No change to domain of A
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AC-3 EXAMPLE
• Variables: A,B,C,D
• Domain: {1,2,3}
• Constraints: A ≠ B, C < B, C < D (subset of constraints from 

before)
• Constraints both ways: A≠ B, B≠ A, C < B, B > C, C < D, D > C
• Queue: AB, BA, BC, CB, CD, DC
• Pop AB
• Queue: BA, BC, CB, CD, DC
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AC-3 EXAMPLE
• Variables: A,B,C,D
• Domain: {1,2,3}
• Constraints: A ≠ B, C < B, C < D (subset of constraints from 

before)
• Constraints both ways: A≠ B, B≠ A, C < B, B > C, C < D, D > C
• Queue: AB, BA, BC, CB, CD, DC
• Pop AB
• Queue: BA, BC, CB, CD, DC
• Pop BA
• for each x in Domain(B)

if no value y in Domain(A) that allows (x,y) to satisfy         
constraint between (B,A)

delete x from Domain(B)
• No change to domain of B
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AC-3 EXAMPLE
• Variables: A,B,C,D
• Domain: {1,2,3}
• Constraints: A ≠ B, C < B, C < D (subset of constraints from 

before)
• Constraints both ways: A≠ B, B≠ A, C < B, B > C, C < D, D > C
• Queue: AB, BA, BC, CB, CD,  DC
• Queue: BA, BC, CB, CD, DC
• Queue: BC, CB, CD, DC
• Pop BC
• for each x in Domain(B)

o if no value y in Domain(C) that allows (x,y) to satisfy constraint between (B,C)
o delete x from Domain(B)

• If B is 1, constraint B >C cannot be satisfied. So delete 1 from B’s domain, B={2,3}
• Also have to add neighbors of B (except C) back to queue: AB
• Queue: AB, CB, CD, DC
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AC-3 EXAMPLE
• Queue: AB, BA, BC, CB, CD, DC     A-D = {1,2,3}
• Queue: BA, BC, CB, CD, DC       A-D = {1,2,3}
• Queue: BC, CB, CD, DC          A-D = {1,2,3}
• Queue: AB, CB, CD, DC          B={2,3}, A/C/D = {1,2,3}
• Pop AB

o For every value of A is there a value of B such that A ≠ B?
o Yes, so no change

49

Variables: A,B,C,D
Domain: {1,2,3}
Constraints: A ≠ B, C < B, C < D
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AC-3 EXAMPLE
• Queue: AB, BA, BC, CB, CD, DC,     A-D = {1,2,3}
• Queue: BA, BC, CB, CD, DC       A-D = {1,2,3}
• Queue: BC, CB, CD, DC          A-D = {1,2,3}
• Queue: AB, CB, CD, DC          B={2,3}, A/C/D = {1,2,3}
• Queue: CB, CD,  DC B={2,3}, A/C/D = {1,2,3}
• Pop CB

o For every value of C is there a value of B such that C < B
o If C = 3, no value of B that fits
o So delete 3 from C’s domain,  C = {1,2}
o Also have to add neighbors of C (except B) back to queue: no change 

because already in 

50

Variables: A,B,C,D
Domain: {1,2,3}
Constraints: A ≠ B, C < B, C < D
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AC-3 EXAMPLE
• Queue: AB, BA, BC, CB, CD, DC,     A-D = {1,2,3}
• Queue: BA, BC, CB, CD, DC       A-D = {1,2,3}
• Queue: BC, CB, CD, DC          A-D = {1,2,3}
• Queue: AB, CB, CD, DC          B={2,3}, A/C/D = {1,2,3}
• Queue: CB, CD, DC B={2,3}, A/C/D = {1,2,3}
• Queue: CD, DC                 B={2,3}, C = {1,2} A,D = {1,2,3}
• Pop CD

o For every value of C, is there a value of D such that C < D?
o Yes, so no change

51

Variables: A,B,C,D
Domain: {1,2,3}
Constraints: A ≠ B, C < B, C < D
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AC-3 EXAMPLE
• Queue: AB, BA, BC, CB, CD, DC     A-D = {1,2,3}
• Queue: BA, BC, CB, CD, DC       A-D = {1,2,3}
• Queue: BC, CB, CD, DC          A-D = {1,2,3}
• Queue: AB, CB, CD, DC          B={2,3}, A/C/D = {1,2,3}
• Queue: CB, CD, DC                 B={2,3}, A/C/D = {1,2,3}
• Queue: CD, DC                 B={2,3}, C = {1,2} A,D = {1,2,3}
• Queue: DC                 B={2,3}, C = {1,2} A,D = {1,2,3}
• For every value of D is there a value of C such that D > C?

o Not if D = 1
o So D = {2,3}

52

Variables: A,B,C,D
Domain: {1,2,3}
Constraints: A ≠ B, C < B, C < D
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AC-3 EXAMPLE
• Queue: AB, BA, BC, CB, CD, DC     A-D = {1,2,3}
• Queue: BA, BC, CB, CD, DC       A-D = {1,2,3}
• Queue: BC, CB, CD, DC          A-D = {1,2,3}
• Queue: AB, CB, CD, DC          B={2,3}, A/C/D = {1,2,3}
• Queue: CB, CD, DC                 B={2,3}, A/C/D = {1,2,3}
• Queue: CD, DC                 B={2,3}, C = {1,2} A,D = {1,2,3}
• Queue: DC                 B={2,3}, C = {1,2} A,D = {1,2,3}
• A = {1,2,3} B={2,3}, C = {1,2} D = {2,3}

53

Variables: A,B,C,D
Domain: {1,2,3}
Constraints: A ≠ B, C < B, C < D
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FORWARD CHECKING

• AC-3 can ran before the search begins to prune search tree; it 
operates on the entire search tree (expensive!)

• It’s a form of inference (inferring reductions)
• What if, instead, we make inference at run-time?
• Forward checking: When assign a variable, make all of its 

neighbors arc-consistent (purely local)

54
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BACKTRACKING + FORWARD CHECKING
• Function Backtrack(assignment,csp) returns soln or fail

o If assignment is complete, return assignment
o Viß select_unassigned_var(csp)
o For each val in order-domain-values(var,csp,assign)

If value is consistent with assignment
Add [Vi = val] to assignment
Make domains of all neighbors of Vi arc-consistent with [Vi = val]
Result ß Backtrack(assignment,csp)
If Result ≠ fail, return result

Remove [Vi = val] from assignments
o Return fail

• Note: When backtracking, domains must be restored
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MAINTAINING ARC CONSISTENCY

• Forward checking doesn’t ensure all arcs are consistent, only 
the local ones, no look-ahead

• AC-3 can detect failure faster than forward checking
• The MAC algorithm includes AC-3 in the search, executing 

it from the arcs of the locally unassigned variables
• What’s the downside? Computation

56
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MAINTAINING ARC CONSISTENCY (MAC)
• Function Backtrack(assignment,csp) returns soln or fail

o If assignment is complete, return assignment
o Viß select_unassigned_var(csp)
o For each val in order-domain-values(var,csp,assign)

If value is consistent with assignment
Add [Vi = val] to assignment
Run AC-3 to make all variables arc-consistent with [Vi = val]. 

Initial queue is arcs (Xj,Vi) of neighbors of Vi that are 
unassigned, but add other arcs if these vars change domains.

Result ß Backtrack(assignment,csp)
If Result ≠ fail, return result

Remove [Vi = val] from assignments
o Return fail
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(TEST) SUFFICIENT TO AVOID
BACKTRACKING?

• If we maintain arc consistency, we will never have to 
backtrack while solving a CSP

• A) True
• B) False
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AC LIMITATIONS

• After running AC-3 
o Can have one solution left
o Can have multiple solutions left
o Can have no solutions left (and not know it)

59

What went 
wrong here?

Arc-consistent but
no feasible assignment
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COMPLEXITY

• CSPs in general are NP-complete
• Valued, optimization version of CSPs are usually NP-hard
• Some structured domains, like those with a constraint 

tree,  are easier and can be solved in polynomial time
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CONSTRAINT TREES

61

• Constraint tree
o Any 2 variables in constraint graph connected by <= 1 path 

• Can be solved in time linear in # of variables

Figure from Russell & Norvig
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1) Choose any var as root and order vars such that every var’s 
parents in constraint graph precede it in ordering

2) Let Xi be the parent of Xj in the new ordering
3) For j=n:2, run arc consistency to arc (Xi,Xj)
4) For j=1:n, assign val for Xj consistent w/val assigned for Xi

ALGORTHM FOR CSP TREES

62Figure from Russell & Norvig
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1) Choose any var as root and order vars such that every 
var’s parents in constraint graph precede it in ordering

2) Let Xi be the parent of Xj in the new ordering
3) For j=n:2, run arc consistency to arc (Xi,Xj)
4) For j=1:n, assign val for Xj consistent w/val assigned for 

Xi

COMPUTATIONAL COMPLEXITY?

63Figure from Russell & Norvig
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SUMMARY

• Be able to define real world CSPs
• Understand basic algorithm (backtracking)

o Complexity relative to basic search algorithms
o Doesn’t require problem specific heuristics 
o Ideas shaping search (ordering heuristics)

• Pruning space through propagating information
o Arc consistency
o Tradeoffs: + reduces search space, - computation costs

• Computational complexity and special cases (tree)
• Relevant reading: R&N Chapter 6
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