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PATH SEARCH VS. LOCAL SEARCH

• The algorithms discussed so far are designed to find a goal 
state from a start state: the path to the goal constitutes a 
solution to the search problem

• In many problems the path doesn’t matter:  
the goal state itself is the solution

• State space = set of “complete” configurations
o Optimization problems: Find optimal configuration 

(objective or cost function)
o Constraint Satisfaction Problems: Find configurations 

satisfying (all or the highest number of) constraints 
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PATH SEARCH VS. LOCAL SEARCH

• Local search algorithms at each step consider a single 
“current” state, and try to improve it by moving to one of its 
neighbors ➔ Iterative improvement algorithms

• Pros and cons
o No complete (no optimal), except with random restarts 
o Space complexity 𝒪(b)
o Time complexity 𝒪(d), d can be ∞!
o Can perform well also in large (infinite, continuous) spaces
o Relatively easy to implement
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STATE-SPACE LANDSCAPE
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state space

Objective function global maximum

shoulder

local maximum

“flat” local maximum

current state

neighborhood
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HILL-CLIMBING SEARCH

• Move in the direction of increasing value (up the hill)
• Terminate when no neighbor has higher value
• Greedy (myopic) local search
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Like climbing Everest in thick fog with amnesia 
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CSP EXAMPLE: N-QUEENS
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Put n queens on an n × n board 
with no two queens on the same 
row, column, or diagonal

State: Position of the n queens, 
one per column (or row)

Successor states: generated by 
moving a single queen to another 

square in its column (n(n-1))

Cost of a state: the number of 
constraint violations 
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N-QUEENS
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State with 17 conflicts, showing the 
#conflicts by moving a queen within 
its column, with best moves in red

Local optimum: state that has only 
one conflict, but every move leads to 
larger #conflicts
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HILL-CLIMBING PERFORMANCE
ON N-QUEENS

• Hill-climbing can solve large instances of n-queens (n = 106) in a few 
(ms)seconds

• 8 queens statistics:
o State space of size ≈17 million
o Starting from random state, steepest-ascent hill climbing solves 14% 

of problem instances
o It takes 4 steps on average when it succeeds, 3 when it gets stuck
o When “sideways” moves are allowed, performance improve …
o When multiple restarts are allowed, performance improves even more
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HILL-CLIMBING CAN GET STUCK! 
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state space

Objective function global maximum

shoulder

“flat” local maximum

current state

neighborhood

Plateaux

Local optima

sideways moves (M):
M=100 → 94% solved instances 

for the 8-queens!
21 steps avg. on success
64 steps avg. on “failure”

random restarts:
100% solved instances

28 steps avg.
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HILL-CLIMBING CAN GET STUCK! 
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Diagonal ridges:
From each local maximum all the 
available actions point downhill,

but there is an uphill path!

Zig-zag motion, 
very long ascent time!

Gradient ascent doesn’t have this 
issue: all state vector components are 
(potentially) changed when moving to a 
successor state, climbing can follow the 
direction of the ridge
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VARIANTS OF HILL-CLIMBING
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• Sideways moves: if no uphill moves, allow moving to a state with 
the same value as the current one (escape shoulders)

• Stochastic hill-climbing: selection among the available uphill 
moves is done randomly (uniform, proportional, soft-max, 
ε-greedy, …) to be “less” greedy

• First-choice hill-climbing: successors are generated randomly, one 
at a time, until one that is better than the current state is found 
(deal with large neighborhoods)

• Random-restart hill climbing: probabilistically complete

If at first you 
don’t succeed, 
try, try again!
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TRAJECTORIES, DIFFICULTIES
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NEIGHBORHOOD
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• A mapping (rule) that associate two states (s,s’)
• It should preserve a certain degree of correlation between 

the value of s and that of s’
• It should balance size and search
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GOOD VS. REALISTIC SCENARIOS
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EXAMPLE NEIGHBORHOODS
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1-flip neighborhood, 
for 0-1 vectors

2-swap neighborhood,
for permutation vectors

k-exchange neighborhood (for TSP and similar problems): The 
neighborhood N(s) of a solution s is the set of solutions sʹ that 
differ from s up to k solution components 
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OPTIMIZATION EXAMPLE: TSP
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Find the Hamiltonian tour of minimal cost 

⇡1 = (1, 3, 4, 2, 6, 5, 7, 1), ⇡2 = (2, 3, 4, 5, 6, 7, 1, 2)
c(⇡2) = d23 + d34 + d45 + d56 + d67 + d71 + d12 = 93

Every cyclic permutation of n
integers is a feasible solution

If two nodes are not connected, they can be 
seen as connected by an arc of ∞ length!

Read also as set of edges: {(2,3), (3,4), (4,5), (5,6), (6,7), (7,1), (1,2)}
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OPTIMIZATION EXAMPLE: TSP
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K-exchange neighborhood:

N(s) is the set of tours sʹ can be obtained 
from s by exchanging k edges in s with k
edges in E\{s} (E is the graph’s edge set)

Each sʹ is obtained deleting a selected set 
of k edges in s and rewiring the resulting 
fragments into a complete tour by 
inserting a different set of k edges 

�n
k

�
possible ways to drop k edges in a tour

(k � 1)!2

k�1
ways to relink the disconnected paths
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2-OPT LOCAL SEARCH
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• Two edges, (i,j) and (l,k), are selected, removed, and replaced by 
two other edges (i,k) and (j,l) (or, (k,i), (l,j))

• One of the two paths needs to get reverted!
• Gain: (i,k) + (j,l) - (i,j) - (k,l)
• n(n-1)=O(n2) possible successors in the 2-exchange neighborhood 
➔ quadratic search complexity for each single 2-opt step move
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2-OPT LOCAL SEARCH
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3-OPT LOCAL SEARCH
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• Including the initial solution, as well as 2-opt moves, there is a 
total of 23 feasible rewirings for each selected triple of edges

• n(n − 1)(n − 2) = O(n3) successors
• One move does not revert the path → appropriate for asymmetric TSP
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2-OPT VS. 3-OPT
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4-OPT DOUBLE BRIDGE

22

• Does not revert the tours
• Computational complexity of a single step: O(n2)
• Often used in conjunction with 2-opt and 3-opt 
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(SOME) PERFORMANCE COMPARISON
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D. Johnson and L. McGeoch, The Traveling Salesman Problem: a case study in local optimization, in Local 
Search in Combinatorial Optimization, E. H. L. Aarts and J. K. Lenstra (editors), John Wiley and Sons, 
Ltd., 1997 
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SIMULATED ANNEALING
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• Escape from local optima by accepting, with a probability 
that decreases during the search, also moves that are 
worse than the current solution (going downhill!)

• Stochastic, solution-improvement metaheuristic for 
global  optimization 

• Inspired by the process of annealing of solids in 
metallurgy:
• The temperature of the solid is increased until it melts
• The temperature is slowly decreased through a quasi-

static process until the solid reaches a minimal energy 
state in which a regular crystal structure appears 
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SIMULATED ANNEALING
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EFFECT OF TEMPERATURE
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PROPERTIES
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• Acceptation probability depends on the current candidate solution 
and on the previous one → The solution sequence can be seen as a 
Markov chain

• If Tk decreases “slowly enough” the algorithm will asymptotically 
converge in probability to the global optimum → Asymptotically 
complete and optimal 

• Convergence can be guaranteed if at each step T drops no more 
quickly than C/log n, C=constant, n # of steps so far

• Cooling schedules that work in practice often lack of convergence 
properties :-( 

• For TSP, n! solutions, the required # of iterations k = O
⇣
nn2n�1

⌘
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A POPULAR TEMPERATURE
SCHEDULE: EXPONENTIAL COOLING
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• Temperature drops roughly as Cn, C ∈ (0, 1)
• A fixed number of moves is performed at each temperature, 

after which one arbitrarily declares “equilibrium” and reduces 
the temperature by a standard factor, Tk+1 = γTk, γ ∈ [0,1] is 
a constant (γ = 0.95 is a common choice)

• Under an exponential cooling regime, the temperature reaches 
values sufficiently close to zero after a polynomially-bounded 
amount of time and the “frozen” state can be declared 
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EXPONENTIAL COOLING
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(SOME) PERFORMANCE COMPARISON
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SUGGESTIONS FOR FURTHER READINGS
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H. Hoos, T. Stueztle, Stochastic Local Search: Foundations & 
Applications, Morgan Kauffmann, 2004

M. Gendreau and J.-Y. Potvin (Editors), Handbook of 
Metaheuristics, Springer 2010

E. Aarts and J. Lenstra (Editors), Local Search in Combinatorial 
Optimization, Princeton University Press, 2003


