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creen Play by STEWART STERN - Produced by DAVID WEISBART
NICHOLAS RAY - Music by Leonard Rosenman

JIM BACKUS - ANN DORAN - COREY ALLEN - WILLIAM HOPPER

http://youtu.be /u7hZ9jKrwvo

Each player, in attempting to secure his best
outcome, risks the worst
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GAME OF CHICKEN

 Social welfare is the sum of
utilities Dare Chicken

e Pure NE: (C,D) and (D,C),
social welfare = 5 Dare Uy 4,1

 Mixed NE: both (1/2,1/2),
social welfare = 4 Chicken 3.3
* Optimal social welfare = €

 Can we do better? Players
are independent so far ...
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CORRELATED EQUILIBRIUM

* A “trusted” authority / mediator chooses a pair of
strategies (s1,S,) according to a distribution p

over §° (it can be generalized to n players)

The mediator flips a coin and based on the outcome
tells the players which pure strategy to use based on
some distribution p(s)
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CORRELATED EQUILIBRIUM

* The trusted party only tells each player what to do,
but it does not reveal what the other party is
supposed to do

* The distribution p is known to the players: each
player knows the probability of observing a strategy
profile and assumes the other player will follow
mediator’s instructions

It is a Correlated Equilibrium (CE) if no player wants
to deviate from the trusted party’s instructions, such
that choices are correlated

* Find distribution p that guarantees a CE
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CORRELATED EQUILIBRIUM

Dare Chicken

* Distribution p (is CE)

® (D,D) O Dare 0,0 772
. (D,C): -
o (C,D)é Chicken 2,7 0,6
. (CO): =

e If Player 2 is told to play D, then 2 knows that the
outcome must be (C,D) and that Player 1 will obey the
instructions. Therefore, P1 plays C, and Player 2 has no
inceptive to change from playing D
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CORRELATED EQUILIBRIUM

Dare Chicken

 Distribution p (is CE)
- (D,D): 0
Dare 0,0 7,2
o D,C .

« If Player 2 is told to play C, then 2 knows that the outcome
must be (D,C) or (C,C) with equal probability. Player’s 2
expected utility on playing C conditioned on the fact that he is
told to play C (and Player 1 will obey instructions) is:

(1/2)*u,(D,C) + (1/2)*1,(C,C) = (1/2)%2 + (1/2)%6 = 4

* If Player 2 deviates from instructions and plays D: u,=3.5 < 4

O
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e It’s better to follow the instructions!
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CORRELATED EQUILIBRIUM

Dare Chicken

 Distribution p (is CE)
- (D,D): 0

- (D,C):
- (CD):
- (C,C):

 Player 2 does not have incentive to deviate

* Since the game is symmetric, also Player 1 does not have
incentive to deviate

e — Correlated equilibrium

« Expected reward per player: (1/3)*7 + (1/3)*2 + (1/3)*6 =5

« Mixed strategy NE: 4*(2/3), which is < 5

* Social welfare: 30/3

Dare ) 7,2

Chicken 2,7

Wk Wk W]k
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CORRELATED EQUILIBRIUM

Let N = {1,2} for simplicity
A mediator chooses a pair of strategies
(s4,S,) according to a distribution p over S*

Reveals s; to player 1 and s, to player 2

When player 1 gets s; € §, he knows that
the distribution over strategies of 2 is

Pr[s; A s,]
Pr|s,]

Pr[s,|s;] =
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ZS;ES p(sl’ Sé)
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CORRELATED EQUILIBRIUM

» Player 1 is best responding if for all s; € S
2 Pr(s;[s1 ] ui(sq,82) = 2 Pr(s,|s,] uqi(s1,52)

SzES SzES

* Equivalently, replacing using Bayes’ rule

2 p(S1,S2)uq (51, 83) = 2 p(S1,S2)Uq(S1,S2)

Szes SzES

* p is a correlated equilibrium (CE) if both
players are best responding
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IMPLEMENTATION OF CE

e Instead of a mediator, use a hat!

* Balls in hat are labeled with “chicken” or “dare”,
each blindfolded player takes a ball

 Poll 1: Which balls implement
the distribution of slide 67
1. 1 chicken, 1 dare
(2) 2 chicken, 1 dare
3. 2 chicken, 2 dare
4. 3 chicken, 2 dare
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CE vSs. NE

e Poll 2: What is the relation between C]

&

and NE?7

. CE > NE CE of slide 6
2 NE = CE is NE?

3. NE © CE

.. NE | CE
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CE vSs. NE

 For any pure strategy NE, there is a corresponding
correlated equilibrium yielding the same outcome.

 For any mixed strategy NE, there is a
corresponding correlated equilibrium yielding the
same distribution of outcomes.

 From Nash theorem, “all” games have a mixed
strategies NE. Since a NE implies a CE, a CE
always exist
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CE As LP

* Can compute CE via linear programming
in polynomial time!
find Vs;,s, € S,p(s¢,5,)
Soto VS]_, S{, Sz E S, Z p(Sl,Sz)ul(Sl,Sz) = 2 p(Sl;SZ)ul(SLSZ)

S» EA S» EA

VSl, So, Sé € S, z p(s1,52)uz(51,52) = 2 p(s1,52)uz(51,53)
S1EA S1EA
z p(sl'SZ) =1

S1,S2E€S

Vs, S, € S,p(sq,S,) €[0,1]
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BEST WELFARE CE

e Adding an objective (linear) function f, the best
correlated equilibrium (e.g., max welfare) can be found

max Vs, s, €5, f(p(sy,52); ug, Uy)
Soto VS]-’ S{, Sz E S, Z p(Sl,Sz)ul(Sl,Sz) = 2 p(Sl,SZ)ul(S{;SZ)

S» EA S» EA

VSl, So, Sé € S, z p(s1,52)uz(51,52) = 2 p(s1,52)uz(51,53)
S1EA S1EA
z p(sl'SZ) =1

S1,S2E€S

Vs, S, € S,p(sq,S,) €[0,1]
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A CURIOUS GAME

* Playing up is a dominant L R

strategy for row player

* So column player would .
play left

* Therefore, (1,1) is the D
only Nash equilibrium

outcome
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COMMITMENT IS GOOD

e Suppose the game is played
sequentially as follows:

L R

o Row player commits to
laying a row U
o Column player observes the
commitment and chooses

column D O : O 2 : 1

* Row player can commit to
playing down: Column player
will play R and the Row player
gets now a better reward!
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COMMITMENT TO MIXED STRATEGY
0 1

By committing to a mixed strategy,
row player can get even better and .49 N 3,0
guarantee a reward of almost 2.5

 Called a Stackelberg strategy (1934)

. . 51 K0 2,1
* Rooted in duopoly scenarios

* Player 1 (Leader) moves at the start of the game. Then use
backward induction to find the subgame perfect equilibrium.

* First, for any output of leader, find the strategy of Follower
that maximizes its payoff (its expected best reply).

* Next, find the strategy of leader that maximizes player 1
utility, given the strategy of follower
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COMPUTING STACKELBERG

e Theorem [Conitzer and Sandholm, EC
2006]: In 2-player normal form games, an
optimal Stackelberg strategy can be found
in poly time

* Theorem [ditto|: the problem is NP-hard
when the number of players is > 3
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TRACTABILITY: 2 PLAYERS

* For each pure follower strategy s,, we compute via
the LP below a strategy x; for the leader such that

- Playing s, is a best response for the follower

o Under this constraint, x; is optimal

* Choose x; that maximizes leader value

max g esX1(S1)u1(S1,52)

s.t. Vs; €S, X esx1(51)up(s1,82) = Mg, es X1 (S1)U2 (81, 52)

Zslesxl(sl) =1
V51 (S S, xl(sl) (S [0,1]
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APPLICATION:

Airport security:
deployed at LAX

Federal Air Marshals
Coast Guard
Idea:

O

Defender commits to
mixed strategy

Attacker observes and
best responds
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SECURITY GAMES

~
i ISR

* Resource w can be assigned

* Set of targets T = {1, ..., n} targets
* Set of m security resources
() available to the defender resources .
(leader) T} @
* Set of schedules T € 27 . ‘ j

to one of the schedules in
Alw) € X P

« Attacker (follower) chooses T
one target to attack
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SECURITY GAMES

 For each target t, there are four
numbers: u} (t) = u (t), and
ur(t) <ug(t) resources
* Let ¢ = (¢q,...,C,) be the
vector of coverage probabilities

* The utilities to the
defender/attacker under c

if target t is attacked are ® /
ug(t, o) =uj(t) ¢ +uz(t)(1—cp) -
ug(t,©) =ud () - ¢, +uz (A —¢,)

targets

- -
~~~~~~

~
i ISR
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This is a 2-player
Stackelberg game,
SO we can compute
an optimal strategy
for the defender in

polynomial time...”
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SOLVING SECURITY GAMES

 Consider the case of X =T, i.e., resources
are assigned to individual targets, i.e.,
schedules have size 1

* Nevertheless, number of leader strategies is
exponential

* Theorem [Korzhyk et al. 2010|: Optimal
leader strategy can be computed in poly
time
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A COMPACT LP*

e LLP formulation
similar to previous max u 4(t*,¢)

one s.t. Vw €OVt € A(w),0<cy<1
 Advantage: VtET,c, = z Cot <1
logarithmic in WEQTEA(w)
+#leader strategies Vo € Q. Z Cyr < 1
* Problem: do tEA(w)
probabilities Vt € T,uq(t, €) < ug(th,c)
correspond to
strategy”?
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FIXING THE PROBABILITIES™

* Theorem |Birkhoff-von Neumann|: Consider an mXn matrix M
with real numbers a;; € [0,1], such that for each i, %;a;; < 1,

and for each j, X;a;; <1 (M is kinda doubly stochastlc). Then
there exist matrices M1, ..., M9 and weights wl,...,w? such that:

1. Zka=
2 YewkMk=M

3. For each k, M¥ is kinda doubly stochastic and its elements are
in {0,1}

* The probabilities ¢, ; satisty theorem’s conditions
* By 3, each M* is a deterministic strategy

* By 1, we get a mixed strategy

By 2, gives right probs
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GENERALIZING™
What about schedules of

size 27
Air Marshals domain has e -
@ @
such schedules: " 0.5
. . . . 0_5\\ 7N 2
outgoing+incoming tlight 7
18 .g+ g 1ig Iﬁi
(bipartite graph) S fos
Q@ @

Previous apporoach fails

e

I'heorem |[Korzhyk et al.
2010]: problem is NP-hard
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Newsweek National News

Subscribe Now  Msk= Newswesk Your Homepage  Newsietters RSS

The Element of Surprise

To help combat the terrorism threat, officials at Los Angeles Inter
Airport are introducing a bold new idea into their arsenal: randon
of security checkpoints. Can game theory help keep us safe?

WEB EXCLUSIVE

By Andrew Murr
Newsweek
Updated: 1:00 p.m. PT Sept 28, 2007

Sept. 28, 2007 - Securnity officials at Los Angeles
International Airport now have a new weapon in
their fight against terrorism: complete, baffling
randomness. Anxious to thwart future terror
attacks in the early stages while plotters are
casing the airport, LAX security patrols have
begun using a new software program called
ARMOR, NEWSWEEK has learned, to make the
placement of security checkpoints completely
unpredictable. Now all airport security officials
have to do is press a button labeled
"Randomize,” and they can throw a sort of digital cloak of invisibility
over where they place the cops' antiterror checkpoints on any given
day.

Security forces work the sidewalk .
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LIMITATIONS

 The defender knows the utility function of the
attacker

o Solution: machine learning
 The attacker perfectly observes the defender’s
randomized strategy

o MDPs, although this may not be a major concern

 The attacker is perfectly rational, i.e., best
responds to the defender’s strategy

o Solution: bounded rationality models
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TESTING BOUNDED RATIONALITY

Game 1 Caught!
Total: $1.4 = $1.5 - $0.1
0.2
Reward if Penalty if 4% Money
successful caught by earned if
rangers - successful
. g Q Ui u
a L_€_
10 -5 02
Percentage of Percentage of
success failure
32% 68%
Google
< Map data 2014 Google imagery £2014 DigitalGlobe Reporta map emor

|[Kar et al., 2015|
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SUMMARY

* Terminology:

o Correlated equilibrium

o otackelberg game

o Security game
* Nobel-prize-winning ideas:
o Correlated equilibrium ©

* Other big ideas:

o Stackelberg games for security
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