CMU 15-781

 Lecture 23:Game Theory II

Teacher:
Gianni A. Di Caro

Game of chicken

Each player, in attempting to secure his best outcome, risks the worst

15781 Fall 2016: Lecture 23

Game of chicken

- Social welfare is the sum of utilities
- Pure NE: (C,D) and (D,C), social welfare $=5$
- Mixed NE: both (1/2,1/2), social welfare $=4$
- Optimal social welfare $=6$

Chicken

Dare	Chicken
0,0	4,1
1,4	3,3

- Can we do better? Players are independent so far ...

Correlated Equilibrium

- A "trusted" authority / mediator chooses a pair of strategies $\left(s_{1}, s_{2}\right)$ according to a distribution p over S^{2} (it can be generalized to n players)

The mediator flips a coin and based on the outcome tells the players which pure strategy to use based on some distribution $p(\boldsymbol{s})$

Correlated equilibrium

- The trusted party only tells each player what to do, but it does not reveal what the other party is supposed to do
- The distribution p is known to the players: each player knows the probability of observing a strategy profile and assumes the other player will follow mediator's instructions
- It is a Correlated Equilibrium (CE) if no player wants to deviate from the trusted party's instructions, such that choices are correlated
- Find distribution p that guarantees a CE

Correlated equilibrium

- Distribution p (is CE)
- ($\mathrm{D}, \mathrm{D}): 0$
- (D,C): $\frac{1}{3}$
- (C,D): $\frac{1}{3}$
- (C,C): $\frac{1}{3}$

- If Player 2 is told to play D, then 2 knows that the outcome must be (C,D) and that Player 1 will obey the instructions. Therefore, P1 plays C, and Player 2 has no incentive to change from playing D

Correlated equilibrium

- Distribution p (is CE)

$$
\begin{array}{ll}
\circ & (\mathrm{D}, \mathrm{D}): 0 \\
\circ & (\mathrm{D}, \mathrm{C}): \frac{1}{3} \\
\circ & (\mathrm{C}, \mathrm{D}): \frac{1}{3} \\
\circ & (\mathrm{C}, \mathrm{C}): \frac{1}{3}
\end{array}
$$

Dare		Chicken
Dare	0,0	7,2
Chicken	2,7	6,6

- If Player 2 is told to play C, then 2 knows that the outcome must be (D, C) or (C, C) with equal probability. Player's 2 expected utility on playing C conditioned on the fact that he is told to play C (and Player 1 will obey instructions) is:

$$
(1 / 2) * u_{2}(\mathrm{D}, \mathrm{C})+(1 / 2) * u_{2}(\mathrm{C}, \mathrm{C})=(1 / 2) * 2+(1 / 2) * 6=4
$$

- If Player 2 deviates from instructions and plays D: $u_{2}=3.5<4$
- It's better to follow the instructions!

Correlated equilibrium

- Distribution p (is CE)

$$
\begin{array}{ll}
\circ & (\mathrm{D}, \mathrm{D}): 0 \\
\circ & (\mathrm{D}, \mathrm{C}): \frac{1}{3} \\
\circ & (\mathrm{C}, \mathrm{D}): \frac{1}{3} \\
\circ & (\mathrm{C}, \mathrm{C}): \frac{1}{3}
\end{array}
$$

- Player 2 does not have incentive to deviate
- Since the game is symmetric, also Player 1 does not have incentive to deviate
- \rightarrow Correlated equilibrium
- Expected reward per player: $(1 / 3) * 7+(1 / 3) * 2+(1 / 3) * 6=5$
- Mixed strategy NE: $4^{*}(2 / 3)$, which is <5
- Social welfare: $30 / 3$

Correlated equilibrium

- Let $N=\{1,2\}$ for simplicity
- A mediator chooses a pair of strategies
$\left(s_{1}, s_{2}\right)$ according to a distribution p over S^{2}
- Reveals s_{1} to player 1 and s_{2} to player 2
- When player 1 gets $s_{1} \in S$, he knows that the distribution over strategies of 2 is

$$
\operatorname{Pr}\left[s_{2} \mid s_{1}\right]=\frac{\operatorname{Pr}\left[s_{1} \wedge s_{2}\right]}{\operatorname{Pr}\left[s_{1}\right]}=\frac{p\left(s_{1}, s_{2}\right)}{\sum_{s_{2}^{\prime} \in S} p\left(s_{1}, s_{2}^{\prime}\right)}
$$

Correlated equilibrium

- Player 1 is best responding if for all $s_{1}^{\prime} \in S$ $\sum_{s_{2} \in S} \operatorname{Pr}\left[s_{2} \mid s_{1}\right] u_{1}\left(s_{1}, s_{2}\right) \geq \sum_{s_{2} \in S} \operatorname{Pr}\left[s_{2} \mid s_{1}\right] u_{1}\left(s_{1}^{\prime}, s_{2}\right)$
- Equivalently, replacing using Bayes' rule

$$
\sum_{s_{2} \in S} p\left(s_{1}, s_{2}\right) u_{1}\left(s_{1}, s_{2}\right) \geq \sum_{s_{2} \in S} p\left(s_{1}, s_{2}\right) u_{1}\left(s_{1}^{\prime}, s_{2}\right)
$$

- p is a correlated equilibrium (CE) if both players are best responding

Implementation of CE

- Instead of a mediator, use a hat!
- Balls in hat are labeled with "chicken" or "dare", each blindfolded player takes a ball
- Poll 1: Which balls implement the distribution of slide 6 ?

1. 1 chicken, 1 dare
(2.) 2 chicken, 1 dare
2. 2 chicken, 2 dare
3. 3 chicken, 2 dare

CE vs. NE

- Poll 2: What is the relation between CE and NE?

1. $\mathrm{CE} \Rightarrow \mathrm{NE}$
(2.) $\mathrm{NE} \Rightarrow \mathrm{CE}$
2. $\mathrm{NE} \Leftrightarrow \mathrm{CE}$
3. NE || CE

15781 Fall 2016: Lecture 23
Carnegie Mellon University 12

CE vs. NE

- For any pure strategy NE, there is a corresponding correlated equilibrium yielding the same outcome.
- For any mixed strategy NE, there is a corresponding correlated equilibrium yielding the same distribution of outcomes.
- From Nash theorem, "all" games have a mixed strategies NE. Since a NE implies a CE, a CE always exist

CE As LP

- Can compute CE via linear programming in polynomial time!
find $\forall s_{1}, s_{2} \in S, p\left(s_{1}, s_{2}\right)$
s.t. $\forall s_{1}, s_{1}^{\prime}, s_{2} \in S, \sum_{s_{2} \in A} p\left(s_{1}, s_{2}\right) u_{1}\left(s_{1}, s_{2}\right) \geq \sum_{s_{2} \in A} p\left(s_{1}, s_{2}\right) u_{1}\left(s_{1}^{\prime}, s_{2}\right)$

$$
\begin{aligned}
& \forall s_{1}, s_{2}, s_{2}^{\prime} \in S, \sum_{s_{1} \in A} p\left(s_{1}, s_{2}\right) u_{2}\left(s_{1}, s_{2}\right) \geq \sum_{s_{1} \in A} p\left(s_{1}, s_{2}\right) u_{2}\left(s_{1}, s_{2}^{\prime}\right) \\
& \sum_{s_{1}, s_{2} \in S} p\left(s_{1}, s_{2}\right)=1 \\
& \forall s_{1}, s_{2} \in S, p\left(s_{1}, s_{2}\right) \in[0,1]
\end{aligned}
$$

Best Welfare CE

- Adding an objective (linear) function f, the best correlated equilibrium (e.g., max welfare) can be found
$\max \forall s_{1}, s_{2} \in S, f\left(p\left(s_{1}, s_{2}\right) ; u_{1}, u_{2}\right)$
s.t. $\forall s_{1}, s_{1}^{\prime}, s_{2} \in S, \sum_{s_{2} \in A} p\left(s_{1}, s_{2}\right) u_{1}\left(s_{1}, s_{2}\right) \geq \sum_{s_{2} \in A} p\left(s_{1}, s_{2}\right) u_{1}\left(s_{1}^{\prime}, s_{2}\right)$

$$
\begin{aligned}
& \forall s_{1}, s_{2}, s_{2}^{\prime} \in S, \sum_{s_{1} \in A} p\left(s_{1}, s_{2}\right) u_{2}\left(s_{1}, s_{2}\right) \geq \sum_{s_{1} \in A} p\left(s_{1}, s_{2}\right) u_{2}\left(s_{1}, s_{2}^{\prime}\right) \\
& \sum_{s_{1}, s_{2} \in S} p\left(s_{1}, s_{2}\right)=1 \\
& \forall s_{1}, s_{2} \in S, p\left(s_{1}, s_{2}\right) \in[0,1]
\end{aligned}
$$

A curious game

- Playing up is a dominant strategy for row player
- So column player would play left
- Therefore, $(1,1)$ is the D only Nash equilibrium
 outcome

Commitment is good

- Suppose the game is played sequentially as follows:
 playing down: Column player will play R and the Row player gets now a better reward!

Commitment to mixed strategy

- By committing to a mixed strategy, row player can get even better and guarantee a reward of almost 2.5
- Called a Stackelberg strategy (1934)
- Rooted in duopoly scenarios

- Player 1 (Leader) moves at the start of the game. Then use backward induction to find the subgame perfect equilibrium.
- First, for any output of leader, find the strategy of Follower that maximizes its payoff (its expected best reply).
- Next, find the strategy of leader that maximizes player 1 utility given the strategy of follower

Computing Stackelberg

- Theorem [Conitzer and Sandholm, EC 2006]: In 2-player normal form games, an optimal Stackelberg strategy can be found in poly time
- Theorem [ditto]: the problem is NP-hard when the number of players is ≥ 3

TRACTABILITY: 2 PLAYERS

- For each pure follower strategy s_{2}, we compute via the LP below a strategy x_{1} for the leader such that
- Playing s_{2} is a best response for the follower
- Under this constraint, x_{1} is optimal
- Choose x_{1}^{*} that maximizes leader value

$$
\max \sum_{s_{1} \in S} x_{1}\left(s_{1}\right) u_{1}\left(s_{1}, s_{2}\right)
$$

s.t. $\forall s_{2}^{\prime} \in S, \sum_{s_{1} \in S} x_{1}\left(s_{1}\right) u_{2}\left(s_{1}, s_{2}\right) \geq \sum_{s_{1} \in S} x_{1}\left(s_{1}\right) u_{2}\left(s_{1}, s_{2}^{\prime}\right)$
$\sum_{s_{1} \in S} x_{1}\left(s_{1}\right)=1$
$\forall s_{1} \in S, x_{1}\left(s_{1}\right) \in[0,1]$

Application: SECURITY

- Airport security: deployed at LAX
- Federal Air Marshals
- Coast Guard
- Idea:
- Defender commits to mixed strategy
- Attacker observes and best responds

Security games

- Set of targets $T=\{1, \ldots, n\}$
targets
- Set of m security resources Ω available to the defender resources (leader)
- Set of schedules $\Sigma \subseteq 2^{T}$
- Resource ω can be assigned to one of the schedules in $A(\omega) \subseteq \Sigma$
- Attacker (follower) chooses one target to attack

SECURITY GAMES

- For each target t, there are four
targets numbers: $u_{d}^{+}(t) \geq u_{d}^{-}(t)$, and

$$
u_{a}^{+}(t) \leq u_{a}^{-}(t)
$$

- Let $\boldsymbol{c}=\left(c_{1}, \ldots, c_{n}\right)$ be the vector of coverage probabilities
- The utilities to the defender/attacker under c if target t is attacked are $u_{d}(t, \boldsymbol{c})=u_{d}^{+}(t) \cdot c_{t}+u_{d}^{-}(t)\left(1-c_{t}\right)$ $u_{a}(t, \boldsymbol{c})=u_{a}^{+}(t) \cdot c_{t}+u_{a}^{-}(t)\left(1-c_{t}\right)$

This is a 2-player

 Stackelberg game, so we can compute an optimal strategy for the defender in polynomial time...?
Solving security games

- Consider the case of $\Sigma=T$, i.e., resources are assigned to individual targets, i.e., schedules have size 1
- Nevertheless, number of leader strategies is exponential
- Theorem [Korzhyk et al. 2010]: Optimal leader strategy can be computed in poly time

A compact LP*

- LP formulation similar to previous one
- Advantage:
logarithmic in
\#leader strategies
- Problem: do probabilities correspond to strategy?

$$
\begin{array}{ll}
\max & u_{d}\left(t^{*}, c\right) \\
\text { s.t. } & \forall \omega \in \Omega, \forall t \in A(\omega), 0 \leq c_{\omega, t} \leq 1 \\
& \forall t \in T, c_{t}=\sum_{\omega \in \Omega: t \in A(\omega)} c_{\omega, t} \leq 1 \\
& \forall \omega \in \Omega, \sum_{t \in A(\omega)} c_{\omega, t} \leq 1 \\
& \forall t \in T, u_{a}(t, \boldsymbol{c}) \leq u_{a}\left(t^{*}, \boldsymbol{c}\right)
\end{array}
$$

* Just for fun

Carnegie Mellon University 27

Fixing the probabilities*

- Theorem [Birkhoff-von Neumann]: Consider an $m \times n$ matrix M with real numbers $a_{i j} \in[0,1]$, such that for each $i, \sum_{j} a_{i j} \leq 1$, and for each $j, \sum_{i} a_{i j} \leq 1$ (M is kinda doubly stochastic). Then there exist matrices M^{1}, \ldots, M^{q} and weights w^{1}, \ldots, w^{q} such that:

1. $\quad \sum_{k} w^{k}=1$
2. $\quad \sum_{k} w^{k} M^{k}=M$
3. For each k, M^{k} is kinda doubly stochastic and its elements are in $\{0,1\}$

- The probabilities $c_{\omega, t}$ satisfy theorem's conditions
- By 3, each M^{k} is a deterministic strategy
- By 1, we get a mixed strategy
- By 2, gives right probs

GEnERALIZING*

- What about schedules of size 2 ?
- Air Marshals domain has such schedules:
outgoing + incoming flight (bipartite graph)
- Previous apporoach fails
- Theorem [Korzhyk et al. 2010]: problem is NP-hard
* Just for fun

Newsweek
 National News

The Element of Surprise

To help combat the terrorism threat, officials at Los Angeles Inter Airport are introducing a bold new idea into their arsenal: random of security checkpoints. Can game theory help keep us safe?

WEB EXCLUSIVE

By Andrew Murr
Newsweek
Updated: 1:00 p.m. PT Sept 28, 2007
Sept. 28, 2007 - Security officials at Los Angeles International Airport now have a new weapon in their fight against terrorism: complete, baffling randomness. Anxious to thwart future terror attacks in the early stages while plotters are casing the airport, LAX security patrols have begun using a new software program called ARMOR, NEWSWEEK has learned, to make the placement of security checkpoints completely unpredictable. Now all airport security officials

Security forces work the sidewalk . have to do is press a button labeled
"Randomize," and they can throw a sort of digital cloak of invisibility over where they place the cops' antiterror checkpoints on any given day.

Limitations

- The defender knows the utility function of the attacker
- Solution: machine learning
- The attacker perfectly observes the defender's randomized strategy
- MDPs, although this may not be a major concern
- The attacker is perfectly rational, i.e., best responds to the defender's strategy
- Solution: bounded rationality models

Testing bounded Rationality

[Kar et al., 2015]
15781 Fall 2016: Lecture 23

Summary

- Terminology:
- Correlated equilibrium
- Stackelberg game
- Security game
- Nobel-prize-winning ideas:
- Correlated equilibrium :)
- Other big ideas:
- Stackelberg games for security

