CMU 15-781 Lecture 23: Game Theory II

Teacher: Gianni A. Di Caro

GAME OF CHICKEN

http://youtu.be/u7hZ9jKrwvo

Each player, in attempting to secure his best outcome, risks the worst

GAME OF CHICKEN

D

- Social welfare is the sum of utilities
- Pure NE: (C,D) and (D,C), social welfare = 5
- Mixed NE: both (1/2,1/2), social welfare = 4 Chick
- Optimal social welfare = 6
- Can we do better? Players are independent so far ...

	Dare	Chicken
are	0,0	$4,\!1$
cen	$1,\!4$	3,3

• A "trusted" authority / mediator chooses a pair of strategies (s_1, s_2) according to a distribution p over S^2 (it can be generalized to n players)

The mediator flips a coin and based on the outcome tells the players which pure strategy to use based on some distribution p(s)

- The trusted party only tells each player what to do, but it does not reveal what the other party is supposed to do
- The distribution *p* is known to the players: each player knows the probability of observing a strategy profile and assumes the other player will follow mediator's instructions
- It is a **Correlated Equilibrium (CE)** if no player wants to deviate from the trusted party's instructions, such that choices are *correlated*
- Find distribution p that guarantees a CE

• Distribution p (is CE)		Dare	Chicken
$\circ (D,D): 0$ $\circ (D,C): \frac{1}{2}$	Dare	$0,\!0$	$7{,}2$
• (C,D): $\frac{1}{3}$	$\operatorname{Chicken}$	$2,\!7$	$6,\! 6$
\circ (C,C): $\frac{1}{3}$			

• If Player 2 is told to play D, then 2 knows that the outcome must be (C,D) and that Player 1 will obey the instructions. Therefore, P1 plays C, and Player 2 has no incentive to change from playing D

• Distribution p (is CF)		omonom
$\circ (D,D): 0$ $\circ (D,C): \frac{1}{3}$ Data	.re 0,0	7,2
$ (C,D): \frac{1}{3} $ $ (C,C): \frac{1}{2} $ Chick	en 2,7	6,6

- If Player 2 is told to play C, then 2 knows that the outcome must be (D,C) or (C,C) with equal probability. Player's 2 expected utility on playing C conditioned on the fact that he is told to play C (and Player 1 will obey instructions) is: $(1/2)^*u_2(D,C) + (1/2)^*u_2(C,C) = (1/2)^*2 + (1/2)^*6 = 4$
 - If Player 2 deviates from instructions and plays D: $u_2=3.5 < 4$
 - It's better to follow the instructions!

•	Dist	wibution p (is CE)		Dare	Chicken
	0	(D,D): 0 (D,C): $\frac{1}{3}$	Dare	$0,\!0$	$7,\!2$
	0	(C,D): $\frac{1}{3}$ (C,C): $\frac{1}{2}$	Chicken	2,7	6,6

- Player 2 does not have incentive to deviate
- Since the game is symmetric, also Player 1 does not have incentive to deviate
- \rightarrow Correlated equilibrium
- Expected reward per player: (1/3)*7 + (1/3)*2 + (1/3)*6 = 5
- Mixed strategy NE: $4^*(2/3)$, which is < 5
- Social welfare: 30/3

- Let $N=\{1,2\}$ for simplicity
- A mediator chooses a pair of strategies (s_1, s_2) according to a distribution p over S^2
- Reveals s_1 to player 1 and s_2 to player 2
- When player 1 gets $s_1 \in S,$ he knows that the distribution over strategies of 2 is

 $\Pr[s_2|s_1] = \frac{\Pr[s_1 \land s_2]}{\Pr[s_1]} = \frac{p(s_1, s_2)}{\sum_{s_2' \in S} p(s_1, s_2')}$

- Player 1 is best responding if for all $s_1' \in S$

$$\sum_{s_2 \in S} \Pr[s_2 | s_1] \, u_1(s_1, s_2) \ge \sum_{s_2 \in S} \Pr[s_2 | s_1] \, u_1(s_1', s_2)$$

- Equivalently, replacing using Bayes' rule $\sum_{s_2 \in S} p(s_1, s_2) u_1(s_1, s_2) \ge \sum_{s_2 \in S} p(s_1, s_2) u_1(s_1', s_2)$
- p is a correlated equilibrium (CE) if both players are best responding

IMPLEMENTATION OF CE

- Instead of a mediator, use a hat!
- Balls in hat are labeled with "chicken" or "dare", each blindfolded player takes a ball
- Poll 1: Which balls implement the distribution of slide 6?
 - 1. 1 chicken, 1 dare
 - $_{2}$ 2 chicken, 1 dare
 - 3. 2 chicken, 2 dare
 - 4. 3 chicken, 2 dare

15781 Fall 2016: Lecture 23

CE VS. NE

- Poll 2: What is the relation between CE and NE?
 1. CE ⇒ NE
 2. NE ⇒ CE
 - 3. NE \Leftrightarrow CE
 - 4. NE ∥ CE

15781 Fall 2016: Lecture 23

CE VS. NE

- For any pure strategy NE, there is a corresponding correlated equilibrium yielding the same outcome.
- For any mixed strategy NE, there is a corresponding correlated equilibrium yielding the same distribution of outcomes.
- From Nash theorem, "all" games have a mixed strategies NE. Since a NE implies a CE, a CE always exist

CE AS LP

• Can compute CE via linear programming in polynomial time!

find $\forall s_1, s_2 \in S, p(s_1, s_2)$ s.t. $\forall s_1, s'_1, s_2 \in S, \sum_{s_2 \in A} p(s_1, s_2) u_1(s_1, s_2) \ge \sum_{s_2 \in A} p(s_1, s_2) u_1(s'_1, s_2)$

$$\forall s_1, s_2, s_2' \in S, \sum_{s_1 \in A} p(s_1, s_2) u_2(s_1, s_2) \ge \sum_{s_1 \in A} p(s_1, s_2) u_2(s_1, s_2')$$

$$\sum_{s_1, s_2 \in S} p(s_1, s_2) = 1$$

$$\forall s_1, s_2 \in S, p(s_1, s_2) \in [0, 1]$$

15781 Fall 2016: Lecture 23

BEST WELFARE CE

• Adding an objective (linear) function *f*, the best correlated equilibrium (e.g., max welfare) can be found

 $\max \ \forall s_1, s_2 \in S, f(p(s_1, s_2); u_1, u_2)$ s.t. $\forall s_1, s_1', s_2 \in S, \sum_{s_2 \in A} p(s_1, s_2) u_1(s_1, s_2) \ge \sum_{s_2 \in A} p(s_1, s_2) u_1(s_1', s_2)$ $\forall s_1, s_2, s_2' \in S, \sum_{s_1 \in A} p(s_1, s_2) u_2(s_1, s_2) \ge \sum_{s_1 \in A} p(s_1, s_2) u_2(s_1, s_2')$ $\sum_{s_1, s_2 \in S} p(s_1, s_2) = 1$ $\forall s_1, s_2 \in S, p(s_1, s_2) \in [0, 1]$

15781 Fall 2016: Lecture 23

A CURIOUS GAME

- Playing up is a dominant strategy for row player
- So column player would play left
- Therefore, (1,1) is the only Nash equilibrium outcome

COMMITMENT IS GOOD

- Suppose the game is played *sequentially* as follows:
 - Row player commits to playing a row
 - Column player observes the commitment and chooses column
- Row player can commit to playing down: Column player will play R and the Row player gets now a better reward!

15781 Fall 2016: Lecture 23

COMMITMENT TO MIXED STRATEGY

- By committing to a mixed strategy, row player can get even better and guarantee a reward of almost 2.5
- Called a Stackelberg strategy (1934)
- Rooted in duopoly scenarios
- Player 1 (*Leader*) moves at the start of the game. Then use backward induction to find the subgame perfect equilibrium.
- First, for any output of leader, find the strategy of *Follower* that maximizes its payoff (its expected best reply).
- Next, find the strategy of leader that maximizes player 1 utility, given the strategy of follower

COMPUTING STACKELBERG

- Theorem [Conitzer and Sandholm, EC 2006]: In 2-player normal form games, an optimal Stackelberg strategy can be found in poly time
- Theorem [ditto]: the problem is NP-hard when the number of players is ≥ 3

TRACTABILITY: 2 PLAYERS

- For each pure follower strategy s_2 , we compute via the LP below a strategy x_1 for the leader such that
 - Playing s_2 is a best response for the follower
 - Under this constraint, x_1 is optimal
- Choose x_1^* that maximizes leader value

$$\max \sum_{s_1 \in S} x_1(s_1) u_1(s_1, s_2)$$

s.t. $\forall s_2' \in S, \ \sum_{s_1 \in S} x_1(s_1)u_2(s_1, s_2) \ge \sum_{s_1 \in S} x_1(s_1)u_2(s_1, s_2')$ $\sum_{s_1 \in S} x_1(s_1) = 1$ $\forall s_1 \in S, x_1(s_1) \in [0, 1]$

15781 Fall 2016: Lecture 23

APPLICATION: SECURITY

- Airport security: deployed at LAX
- Federal Air Marshals
- Coast Guard
- Idea:
 - Defender commits to mixed strategy
 - Attacker observes and best responds

15781 Fall 2016: Lecture 23

SECURITY GAMES

- Set of targets $T=\{1,\ldots,n\}$
- Set of m security resources Ω available to the defender resources (leader)
- Set of schedules $\Sigma \subseteq 2^T$
- Resource ω can be assigned to one of the schedules in $A(\omega) \subseteq \Sigma$
- Attacker (follower) chooses one target to attack

SECURITY GAMES

- For each target t, there are four numbers: $u_d^+(t) \ge u_d^-(t)$, and $u_a^+(t) \le u_a^-(t)$ resources
- Let $\boldsymbol{c} = (c_1, \dots, c_n)$ be the vector of coverage probabilities
- The utilities to the defender/attacker under **c** if target *t* is attacked are $u_d(t, c) = u_d^+(t) \cdot c_t + u_d^-(t)(1 - c_t)$ $u_a(t, c) = u_a^+(t) \cdot c_t + u_a^-(t)(1 - c_t)$

targets

15781 Fall 2016: Lecture 23

This is a 2-player Stackelberg game, so we can compute an optimal strategy for the defender in polynomial time...?

15781 Fall 2016: Lecture 23

SOLVING SECURITY GAMES

- Consider the case of $\Sigma = T$, i.e., resources are assigned to individual targets, i.e., schedules have size 1
- Nevertheless, number of leader strategies is exponential
- Theorem [Korzhyk et al. 2010]: Optimal leader strategy can be computed in poly time

A COMPACT LP*

- LP formulation
 similar to previous
 one
- Advantage: logarithmic in #leader strategies
- Problem: do probabilities correspond to strategy?

$$\begin{split} \max \ u_d(t^*,c) \\ \text{s.t.} \quad &\forall \omega \in \Omega, \forall t \in A(\omega), 0 \leq c_{\omega,t} \leq 1 \\ &\forall t \in T, c_t = \sum_{\omega \in \Omega: t \in A(\omega)} c_{\omega,t} \leq 1 \\ &\forall \omega \in \Omega, \sum_{t \in A(\omega)} c_{\omega,t} \leq 1 \\ &\forall t \in T, u_a(t,c) \leq u_a(t^*,c) \end{split}$$

* Just for fun

	t_1	t_2	t_3
ω_1	0.7	0.2	0.1
ω2	0	0.3	0.7

* Just for fun

FIXING THE PROBABILITIES*

- Theorem [Birkhoff-von Neumann]: Consider an $m \times n$ matrix M with real numbers $a_{ij} \in [0,1]$, such that for each $i, \sum_j a_{ij} \leq 1$, and for each $j, \sum_i a_{ij} \leq 1$ (M is kinda doubly stochastic). Then there exist matrices M^1, \dots, M^q and weights w^1, \dots, w^q such that:
 - 1. $\sum_k w^k = 1$
 - $2. \quad \sum_k w^k M^k = M$
 - 3. For each k, M^k is kinda doubly stochastic and its elements are in $\{0,1\}$
- The probabilities $c_{\omega,t}$ satisfy theorem's conditions
- By 3, each M^k is a deterministic strategy
- By 1, we get a mixed strategy
- By 2, gives right probs

GENERALIZING*

- What about schedules of size 2?
- Air Marshals domain has such schedules: outgoing+incoming flight (bipartite graph)
- Previous apporoach fails
- Theorem [Korzhyk et al. 2010]: problem is NP-hard

Newsweek National News

Subscribe Now | Make Newsweek Your Homepage | Newsletters | RSS

The Element of Surprise

To help combat the terrorism threat, officials at Los Angeles Inter Airport are introducing a bold new idea into their arsenal: random of security checkpoints. Can game theory help keep us safe?

WEB EXCLUSIVE

By Andrew Murr Newsweek Updated: 1:00 p.m. PT Sept 28, 2007

Sept. 28, 2007 - Security officials at Los Angeles International Airport now have a new weapon in their fight against terrorism: complete, baffling randomness. Anxious to thwart future terror attacks in the early stages while plotters are casing the airport, LAX security patrols have begun using a new software program called ARMOR, NEWSWEEK has learned, to make the placement of security checkpoints completely unpredictable. Now all airport security officials have to do is press a button labeled

Security forces work the sidewalk a

"Randomize," and they can throw a sort of digital cloak of invisibility over where they place the cops' antiterror checkpoints on any given day.

15781 Fall 2016: Lecture 23

LIMITATIONS

- The defender knows the utility function of the attacker
 - Solution: machine learning
- The attacker perfectly observes the defender's randomized strategy
 - \circ MDPs, although this may not be a major concern
- The attacker is perfectly rational, i.e., best responds to the defender's strategy
 - Solution: bounded rationality models

TESTING BOUNDED RATIONALITY

[Kar et al., 2015]

15781 Fall 2016: Lecture 23

SUMMARY

- Terminology:
 - Correlated equilibrium
 - Stackelberg game
 - Security game
- Nobel-prize-winning ideas:
 - \circ Correlated equilibrium \bigcirc
- Other big ideas:
 - Stackelberg games for security

15781 Fall 2016: Lecture 23