
CMU 15-781
Lecture 2:
Uninformed Search

Teacher:
Gianni A. Di Caro

15781 Fall 2016: Lecture 2

SEARCH PROBLEMS

• A search problem has:
o States (configurations)
o Start state and goal states
o Actions available to the agent in each state
o Transition model: the state resulting from doing

action a in state s (Successor function)
o Cost model: step costs c(s, a, s’) ≥ 0, path costs

(additive)

2

Find one (the optimal) sequence of actions (path)
from start to a goal state

15781 Fall 2016: Lecture 2

EXAMPLE: PANCAKES

3

15781 Fall 2016: Lecture 2

EXAMPLE: PANCAKES

4

1

1

1

1 1

s t

15781 Fall 2016: Lecture 2

EXAMPLE: 8-PUZZLE

5

5

4

6 1

87

3

2

54 6

1

87

32

5

4

6 1

87

3

2

5

4

6 1

87

32

1

1

s

t

How many states?

15781 Fall 2016: Lecture 2

EXAMPLE: PATHFINDING

6

15781 Fall 2016: Lecture 2

EXAMPLE: TOURING PROBLEMS

7

Visit every city at least once,
starting and ending in Bucharest

How the state
space looks like?

Traveling salesperson problem (TSP):
Visit each city exactly once and find the

tour of minimum “cost”
(costs may be not symmetric…)

15781 Fall 2016: Lecture 2

EXAMPLE: TOURING PROBLEMS

8

71,009 cities
16,892 cities

http://www.math.uwaterloo.ca/tsp/world/countries.html

Trivial to find one feasible solution, (NP-) hard to find the best one

15781 Fall 2016: Lecture 2

EXAMPLE: PROTEIN FOLDING

9

15781 Fall 2016: Lecture 2

TREE SEARCH
function TREE-SEARCH(problem, strategy)
set of frontier nodes contains the start state of problem
loop
• if there are no frontier nodes then return failure
• choose a frontier node for expansion using strategy
• if the node contains a goal then return the corresponding

solution
• else expand the node and add the resulting nodes to the

set of frontier nodes

10

15781 Fall 2016: Lecture 2

TREE SEARCH

11

Frontier
nodes

Explored
nodes

15781 Fall 2016: Lecture 2

TREE SEARCH
• Tree search can expand the same

states again and again
• In a rectangular grid:

o Search tree of depth 𝑑 has 4# leaves
o There are only 4𝑑 states within 𝑑

steps of any given state

12

Algorithms
that forget

their history
are doomed
to repeat it!

15781 Fall 2016: Lecture 2

STATES VS. NODES
• State s: an admissible configuration of the world
• Node n: a bookkeeping data structure used to represent the

search tree, that contains:
o n.STATE: the state s to which n corresponds to
o n.PARENT: the node in the search tree that generated node n
o n.ACTION: the action that was applied to the parent to generate n
o n.PATH-COST: the cost g(n) of the path from the initial node to n

as indicated by the parent pointers (cost-to-come)
• Nodes are on specific paths, as defined by PARENT

pointers, states are not
• Two different nodes can contain the same state s, if s was

generated via two different search paths

13

15781 Fall 2016: Lecture 2

STATES VS. NODES

14

1

23

45

6

7

81

23

45

6

7

8

Node

STATE

PARENT

ACTION = Right
PATH-COST = 6

Same state,
different nodes

15781 Fall 2016: Lecture 2

GRAPH SEARCH
function GRAPH-SEARCH(problem, strategy)
set of frontier nodes contains the start state of problem
loop
• if there are no frontier nodes then return failure
• choose a frontier node for expansion using strategy, and

add it to the explored set
• if the node contains a goal then return the corresponding

solution
• else expand the node and add the resulting nodes to the set

of frontier nodes, only if not in the frontier or explored set

15

15781 Fall 2016: Lecture 2

GRAPH SEARCH ILLUSTRATED

16

Separation property: Every path from initial state to
an unexplored state has to pass through the frontier.
The frontier separates explored vs. unexplored regions

Each node is associated to a different state,
the search tree grows on the state graph

15781 Fall 2016: Lecture 2

UNINFORMED VS. INFORMED

17

Uninformed Informed
Can only generate
successors and distinguish
goals from non-goals

Strategies that know whether
one non-goal is more
promising than another

15781 Fall 2016: Lecture 2

MEASURING PERFORMANCE

18

Completeness Optimality Time Space
Guaranteed to
find a solution
when there is
one?

Finds the
cheapest
solution?

How long does
it take to find
a solution?

How much
memory is
needed to
perform the
search?

15781 Fall 2016: Lecture 2

BREADTH-FIRST SEARCH

• Strategy: Expand shallowest unexpanded node
• Can be implemented by using a FIFO queue for

the frontier
• Goal test applied when node is generated

19

15781 Fall 2016: Lecture 2

BREADTH-FIRST SEARCH

• Complete: Yes, also in infinite graphs, but b must be finite
• Optimality: If the path cost is a nondecreasing function of the

depth (e.g., all actions have the same cost)
• Time complexity: Imagine each node has 𝑏 successors, and solution

is at depth 𝑑, then generate ∑ 𝑏& = Θ 𝑏##
&)* nodes. If goal test is

applied when node expanded ➔ Θ 𝑏#+*

• Space complexity: For graph search Θ 𝑏# 		nodes are in frontier
and Θ 𝑏#-* in the explored (➜ tree search would not save much)

20

Complete? Optimal? Time Space
Yes Not really 	Θ 𝑏# Θ 𝑏#

Algorithm
BFS

15781 Fall 2016: Lecture 2

BREADTH-FIRST SEARCH

21

11

10
5

1

11

1
1

1Not optimal Optimal

Exponential BFS tree growth (b=2)

For b=10, d=12 ➔ Θ(1012) nodes
If 1 node requires 1 kB ➔ 1012 kB!

15781 Fall 2016: Lecture 2

BIDIRECTIONAL SEARCH

• Idea: Possibly improve the running time of
BFS by running two simultaneous
searches, forward from the initial state and
backward from the goal

• Poll 1: What is the worst-case running
time of BIDIRECTIONAL SEARCH?
1. Θ(𝑏 ⋅ 𝑑)
2. Θ((𝑏/2)#)
3. Θ(𝑏#/6)
4. Θ(𝑏#)

22

15781 Fall 2016: Lecture 2

BIDIRECTIONAL SEARCH
Θ(𝑏#/6) + Θ(𝑏#/6)≪ Θ(𝑏#)
For b=10, d=6, each BFS generates up to depth
d=3 ➜ 2,220 nodes vs. 1,111,110, big memory save!

23

Issues:
• Asymmetric costs
• Unidirectional moves
• Repeated check for frontier intersection

(additional constant time with hashing)
• Existence of multiple goals
• Abstract goal definition

15781 Fall 2016: Lecture 2

UNIFORM-COST SEARCH
• Strategy: Expand unexpanded node with lowest path cost 𝑔(𝑛)
• Can be implemented by using a priority queue ordered by
𝑔(𝑛) for the frontier

• Other changes from BFS:
o Goal test applied when node is selected for expansion
o If a successor is already in the frontier set, its path cost needs to

be updated if lower than the previously computed one

24

99

211

80

97

101

99

211

80

97

101

99

211

80

97

101

99

211

80

97

101

99

211

80

97

101

15781 Fall 2016: Lecture 2

UNIFORM-COST SEARCH

• Optimality: When a node is selected for expansion the
optimal path to the node has been found

• Completeness: If the cost of every step exceeds 𝜖 > 0
(and b is finite)

• Time complexity: If 𝐶∗ is the cost of the optimal solution
and 𝜖 is a lower bound on the step cost, the worst-case
depth of the search tree is 1 + ⌊𝐶∗/𝜖⌋

• The complexity is Θ(𝑏#+*) when step costs are uniform

25

Complete? Optimal? Time Space
Sorta Yes Θ 𝑏*+ A∗/B 	Θ 𝑏*+ A∗/B

Algorithm
UCS

15781 Fall 2016: Lecture 2

DEPTH-FIRST SEARCH

• Strategy: Expand deepest unexpanded node
• Can be implemented by using a stack for the

frontier (LIFO)
• Recursive implementation is also common

26

15781 Fall 2016: Lecture 2

DEPTH-FIRST SEARCH

27

15781 Fall 2016: Lecture 2

DEPTH-FIRST SEARCH

• Completeness: Clearly not in general
• Poll 2: In a finite state space, which version of DFS is

complete?
1. TREE SEARCH

2. GRAPH SEARCH
3. Both
4. Neither

28

Complete? Optimal? Time Space
No No 	Θ 𝑏C Θ 𝑏 ⋅ 𝑚

Algorithm
DFS

15781 Fall 2016: Lecture 2

DEPTH-FIRST SEARCH

• Time complexity: Θ 𝑏C , where 𝑚 is the maximum
depth of any solution!

• Space complexity: DFS tree search needs to store only a
single path from the root to a leaf, along with
unexpanded sibling nodes for each node on the path

• Consequently, depth-first tree search is the workhorse of
many areas of AI (including CSPs and SAT solving)

29

Complete? Optimal? Time Space
No No 	Θ 𝑏C Θ 𝑏 ⋅ 𝑚

Algorithm
DFS

15781 Fall 2016: Lecture 2

ITERATIVE DEEPENING SEARCH

• Run DFS with depth limit ℓ = 1,2, …
• Combines the best properties of BFS and DFS
• Completeness: Yes, for the same reason BFS is complete
• Time complexity: Seems wasteful but most of the nodes

are at the bottom level; total
𝑑 ⋅ 𝑏 + 𝑑 − 1 𝑏6 +⋯+ 1 ⋅ 𝑏# = Θ 𝑏#

30

Complete? Optimal? Time Space
Yes No 	Θ 𝑏# Θ 𝑏 ⋅ 𝑑

Algorithm
IDS

15781 Fall 2016: Lecture 2

BFS

SUMMARY OF ALGORITHMS

31

Complete? Optimal? Time Space
Yes Not really 	Θ 𝑏# Θ 𝑏#

Algorithm

Sorta Yes Θ 𝑏*+ A∗/B 	Θ 𝑏*+ A∗/BUCS
No No 	Θ 𝑏C Θ 𝑏 ⋅ 𝑚DFS
Yes No 	Θ 𝑏# Θ 𝑏 ⋅ 𝑑IDS

15781 Fall 2016: Lecture 2

SUMMARY

• Terminology:
o Search problems
o Local search

• Algorithms:
o Generic search algorithms:

tree search vs. graph search
o Strategies: BFS, Bidirectional,

UCS, DFS, Iterative Deepening
o Local search algorithms …. Next time

32

