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SEARCH PROBLEMS

• A search problem has:
o States (configurations)
o Start state and goal states
o Actions available to the agent in each state
o Transition model: the state resulting from doing 

action a in state s (Successor function)
o Cost model: step costs c(s, a, s’) ≥ 0,  path costs

(additive)
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Find one (the optimal) sequence of actions (path)
from start to a goal state
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EXAMPLE: PANCAKES
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EXAMPLE: PANCAKES
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EXAMPLE: 8-PUZZLE
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How many states?
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EXAMPLE: PATHFINDING
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EXAMPLE: TOURING PROBLEMS
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Visit every city at least once, 
starting and ending in Bucharest

How the state 
space looks like?

Traveling salesperson problem (TSP): 
Visit each city exactly once and find the 

tour of minimum “cost”
(costs may be not symmetric…)
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EXAMPLE: TOURING PROBLEMS
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71,009 cities
16,892 cities

http://www.math.uwaterloo.ca/tsp/world/countries.html

Trivial to find one feasible solution, (NP-) hard to find the best one
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EXAMPLE: PROTEIN FOLDING
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TREE SEARCH
function TREE-SEARCH(problem, strategy)
set of frontier nodes contains the start state of problem
loop 
• if there are no frontier nodes then return failure
• choose a frontier node for expansion using strategy
• if the node contains a goal then return the corresponding 

solution
• else expand the node and add the resulting nodes to the 

set of frontier nodes
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TREE SEARCH
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Frontier
nodes

Explored
nodes
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TREE SEARCH
• Tree search can expand the same 

states again and again
• In a rectangular grid:

o Search tree of depth 𝑑 has 4# leaves
o There are only 4𝑑 states within 𝑑

steps of any given state

12

Algorithms 
that forget 

their history
are doomed 
to repeat it!
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STATES VS. NODES
• State s: an admissible configuration of the world
• Node n: a bookkeeping data structure used to represent the 

search tree, that contains:
o n.STATE: the state s to which n corresponds to
o n.PARENT: the node in the search tree that generated node n
o n.ACTION: the action that was applied to the parent to generate n
o n.PATH-COST: the cost g(n) of the path from the initial node to n

as indicated by the parent pointers (cost-to-come)
• Nodes are on specific paths, as defined by PARENT 

pointers, states are not
• Two different nodes can contain the same state s, if s was 

generated via two different search paths
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STATES VS. NODES

14

1

23

45

6

7

81

23

45

6

7

8

Node

STATE

PARENT

ACTION = Right
PATH-COST = 6

Same state, 
different nodes
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GRAPH SEARCH
function GRAPH-SEARCH(problem, strategy)
set of frontier nodes contains the start state of problem
loop 
• if there are no frontier nodes then return failure
• choose a frontier node for expansion using strategy, and 

add it to the explored set
• if the node contains a goal then return the corresponding 

solution
• else expand the node and add the resulting nodes to the set 

of frontier nodes, only if not in the frontier or explored set
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GRAPH SEARCH ILLUSTRATED

16

Separation property: Every path from initial state to 
an unexplored state has to pass through the frontier.
The frontier separates explored vs. unexplored regions

Each node is associated to a different state,
the search tree grows on the state graph
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UNINFORMED VS. INFORMED
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Uninformed Informed
Can only generate 
successors and distinguish 
goals from non-goals

Strategies that know whether 
one non-goal is more 
promising than another
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MEASURING PERFORMANCE
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Completeness Optimality Time Space
Guaranteed to 
find a solution 
when there is 
one?

Finds the 
cheapest 
solution?

How long does 
it take to find 
a solution?

How much 
memory is 
needed to 
perform the 
search?
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BREADTH-FIRST SEARCH

• Strategy: Expand shallowest unexpanded node 
• Can be implemented by using a FIFO queue for 

the frontier
• Goal test applied when node is generated
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BREADTH-FIRST SEARCH

• Complete: Yes, also in infinite graphs, but b must be finite
• Optimality: If the path cost is a nondecreasing function of the 

depth (e.g., all actions have the same cost)
• Time complexity: Imagine each node has 𝑏 successors, and solution 

is at depth 𝑑, then generate ∑ 𝑏& = Θ 𝑏##
&)* nodes. If goal test is 

applied when node expanded ➔ Θ 𝑏#+*

• Space complexity: For graph search Θ 𝑏# 		nodes are in frontier 
and Θ 𝑏#-* in the explored (➜ tree search would not save much)
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Complete? Optimal? Time Space
Yes Not really 	Θ 𝑏# Θ 𝑏#

Algorithm
BFS
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BREADTH-FIRST SEARCH
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Exponential BFS tree growth (b=2)

For b=10, d=12 ➔ Θ(1012) nodes 
If 1 node requires 1 kB ➔ 1012 kB!
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BIDIRECTIONAL SEARCH

• Idea: Possibly improve the running time of 
BFS by running two simultaneous 
searches, forward from the initial state and 
backward from the goal

• Poll 1: What is the worst-case running 
time of BIDIRECTIONAL SEARCH?
1. Θ(𝑏 ⋅ 𝑑)
2. Θ((𝑏/2)#)
3. Θ(𝑏#/6)
4. Θ(𝑏#)
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BIDIRECTIONAL SEARCH
Θ(𝑏#/6) + Θ(𝑏#/6)≪ Θ(𝑏#)
For b=10, d=6, each BFS generates up to depth 
d=3 ➜ 2,220 nodes vs. 1,111,110, big memory save!
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Issues:
• Asymmetric costs
• Unidirectional moves
• Repeated check for frontier intersection 

(additional constant time with hashing)
• Existence of multiple goals 
• Abstract goal definition
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UNIFORM-COST SEARCH
• Strategy: Expand unexpanded node with lowest path cost 𝑔(𝑛)
• Can be implemented by using a priority queue ordered by 
𝑔(𝑛) for the frontier

• Other changes from BFS:
o Goal test applied when node is selected for expansion
o If a successor is already in the frontier set, its path cost needs to 

be updated if lower than the previously computed one
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UNIFORM-COST SEARCH

• Optimality: When a node is selected for expansion the 
optimal path to the node has been found

• Completeness: If the cost of every step exceeds 𝜖 > 0
(and b is finite)

• Time complexity: If 𝐶∗ is the cost of the optimal solution 
and 𝜖 is a lower bound on the step cost, the worst-case 
depth of the search tree is 1 + ⌊𝐶∗/𝜖⌋

• The complexity is Θ(𝑏#+*) when step costs are uniform
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Complete? Optimal? Time Space
Sorta Yes Θ 𝑏*+ A∗/B 	Θ 𝑏*+ A∗/B

Algorithm
UCS
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DEPTH-FIRST SEARCH

• Strategy: Expand deepest unexpanded node 
• Can be implemented by using a stack for the 

frontier (LIFO)
• Recursive implementation is also common
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DEPTH-FIRST SEARCH
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DEPTH-FIRST SEARCH

• Completeness: Clearly not in general
• Poll 2: In a finite state space, which version of DFS is 

complete?
1. TREE SEARCH

2. GRAPH SEARCH
3. Both
4. Neither
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Complete? Optimal? Time Space
No No 	Θ 𝑏C Θ 𝑏 ⋅ 𝑚

Algorithm
DFS
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DEPTH-FIRST SEARCH

• Time complexity: Θ 𝑏C , where 𝑚 is the maximum 
depth of any solution!

• Space complexity: DFS tree search needs to store only a 
single path from the root to a leaf, along with 
unexpanded sibling nodes for each node on the path

• Consequently, depth-first tree search is the workhorse of 
many areas of AI (including CSPs and SAT solving)
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Complete? Optimal? Time Space
No No 	Θ 𝑏C Θ 𝑏 ⋅ 𝑚

Algorithm
DFS
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ITERATIVE DEEPENING SEARCH

• Run DFS with depth limit ℓ = 1,2, …
• Combines the best properties of BFS and DFS
• Completeness: Yes, for the same reason BFS is complete
• Time complexity: Seems wasteful but most of the nodes 

are at the bottom level; total 
𝑑 ⋅ 𝑏 + 𝑑 − 1 𝑏6 +⋯+ 1 ⋅ 𝑏# = Θ 𝑏#
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Complete? Optimal? Time Space
Yes No 	Θ 𝑏# Θ 𝑏 ⋅ 𝑑

Algorithm
IDS
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BFS

SUMMARY OF ALGORITHMS
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Complete? Optimal? Time Space
Yes Not really 	Θ 𝑏# Θ 𝑏#

Algorithm

Sorta Yes Θ 𝑏*+ A∗/B 	Θ 𝑏*+ A∗/BUCS
No No 	Θ 𝑏C Θ 𝑏 ⋅ 𝑚DFS
Yes No 	Θ 𝑏# Θ 𝑏 ⋅ 𝑑IDS
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SUMMARY

• Terminology:
o Search problems
o Local search

• Algorithms:
o Generic search algorithms:

tree search vs. graph search
o Strategies: BFS, Bidirectional, 

UCS, DFS, Iterative Deepening
o Local search algorithms …. Next time
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