/ CMU 15-781

Lecture 18:
Deep learning and Vision:
Convolutional neural networks

Teacher:
Gianni A. Di Caro

DEEP, SHALLOW, CONNECTED, SPARSE?

hidden layer

* Fully connected multi-layer feed-forward perceptrons:
* More powerful than single layer networks:
FOO = ila(fs w fa(®)-.))
 (Can potentially learn hierarchical feature representations

* A lot of parameters to learn! Need time, CPU,
optimization algorithms, data, and has to avoid overfitting

15781 Fall 2016: Lecture 18 Carnegie Mellon University 2

VISION EXAMPLE

Example: 1000x1000 image
1M hidden units
m) 10112 parameters!!

 Traditional MLPs receive as input a single
vector and transforms it through a series
of (fully connected) hidden layers

O « For an image (32w, 32h, 3c), the input

° layer has 32x32x3=3072 neurons, such
»
.

that a single fully-connected neuron in the
first hidden layer would have 3072 weights

 Two main issues: space-time complexity
and lack of structure, locality of
information

15781 Fall 2016: Lecture 18 Carnegie Mellon University 3

IMAGES ARE “MULTI-DIMENSIONAL”

Have a local
structure and
correlations

Have
distinctive
features in

space and in
frequency
domains

Carnegie Mellon University 4

SAME (USEFUL) FEATURES CAN BE
ROTATED, TRANSLATED, SCALED ...

Object detection

Where are
the objects of
interest?

Finding / Extracting good
features is fundamental in
vision processing tasks
But it’s not an easy
task!

Carnegie Mellon University 5

BTW ... FEATURES?

* Want uniqueness

 Want invariance
* Geometric tnvariance: translation, rotation, scale
* Photometric invariance: brightness, exposure, ...

* Leads to unambiguous matches in other images or wrt to
know entities of interest

* Look for “interest points”: image regions that are unusual
* Typically non-linear, “complex”

e How to define “unusual”?

15781 Fall 2016: Lecture 18 Carnegie Mellon University 6

15781 Fall 2016: Lecture 18

SIF'T

» Take 16x16 square window around detected interest point (8x8 shown below)

Basic idea:

» Compute edge orientation (angle of the gradient minus 90°) for each pixel
» Throw out weak edges (threshold gradient magnitude)
* Create histogram of surviving edge orientations (8 bins) SIF T

Scale Invariant Feature Transform

0 2n Full version
angle histogram « Divide the 16x16 window into a 4x4 grid of cells
(8x8 window and 2x2 grid shown below for simplicity)
* Compute an orientation histogram for each cell
Slg 5 * 16 cells * 8 orientations = 128 dimensional descriptor

Image gradients

Keypoint descriptor

Carnegie Mellon University 8

~

« @
'4 . 15781 Fall 2016: Lecture 18 Carnegie Mellon University 9

DIFF:

(-

RENT RECIPES

“Classical”
Pattern recognition

O
QO
w
w
=%
D
-

~
O
-

Solution #1: freeze first N-1 layer (engineer the features)
It makes it shallow!

Optimization is difficult: non-convex, non-linear system

(CHOt77

Convolutional
Neural Networks

Solution #2: live with it!
It will converge to a local minimum.

Carnegie Mellon University 10

CONVOLUTIONAL NNSs

Convolution Fully connected

A

~

S

LO (Input) L1 2 13 u F5 F6
512x512 256x256 128x128 64x64 32x32 (Output)
Not anymore fully connected
Locality of processing
Weight sharing for parameter reduction
Learn the parameters of multiple convolutional filter banks
Compress to extract salient features and favor generalization

15781 Fall 2016: Lecture 18 Carnegie Mellon University 11

CONVOLUTIONAL NN

RELU RELU RELU RELU RELU RELU
CONV lCONVl CONV lCONVl CONV lCONVl

i e e ot i e e

[=

I

car
frtick

1

WRUGLR]

Qiplane

AT L7 N A 6 A
B b

ghip

|T1~OI’SG

‘¥

Lol
l.'-_"

-
-
-
e |
,_

AR RGYNE

AEEIRLEERE

AN E

http://cs231n.github.io/

@ o, 15781 Fall 2016: Lecture 18 Carnegie Mellon University 12

LOCALITY OF INFORMATION:
RECEPTIVE FIELDS

input neurons

28%28 = T84
input image

' 00000. hidden neuron
o ' § N 80000-"
————=a
Example: 1000x1000 image
1M hidden units
Filter size: 10x10 OXd =25
100M parameters input pixels

How many
Filter/Kernel/Receptive field: neurons in the 15t

input patch which the hidden unitis _, .
connected to. hldden layer?

\J
Ranzato"

15781 Fall 2016: Lecture 18 Carnegie Mellon University 13

(FILTER) STRIDE

Let’s slide the 5x5 mask over all input pixels

illpllt neurons

first hidden layer

Stride length = 1

Any stride can be used ...
with some precautions

input neurons
Q0088 first hidden layer

How many
neurons in the 15
hidden layer?

24 x 24

15781 Fall 2016: Lecture 18 Carnegie Mellon University 14

(FILTER) PADDING

Resulting hidden layer

2 || 2 1 2 1

Filter

0 1 2 || -1 1(-3(0

padding the e

15781 Fall 2016: Lecture 18 Carnegie Mellon University 15

SHARED WEIGHTS

 What is the precise relationship between the neurons in the
receptive field and that in the hidden layer?

 What is the activation value of the hidden layer neuron?

4 4
o| b+ Z Z Wi mQj+1k+m

[=0 m=0

* 0 is the selected activation function, a are the
activation values of the neurons in the receptive field

 The same weights w and bias b are used for each of
the 24 x24 hidden neurons

15781 Fall 2016: Lecture 18 Carnegie Mellon University 16

FEATURE MAP

e All the neurons in the first hidden layer detect exactly the
same feature, just at different locations in the input image.

¢ “Feature”: the kind of input pattern (e.g., a local edge)
that determine the neuron to "fire” or, more in general,
produce a certain response level

 Why this makes sense? Suppose the weights and bias are
(learned) such that the hidden neuron can pick out, a
vertical edge in a particular local receptive tield. That
ability is also likely to be useful at other places in the
image. And so it is useful to apply the same feature
detector everywhere in the image.

15781 Fall 2016: Lecture 18 Carnegie Mellon University 17

FEATURE MAP

 The map from the input layer to
the hidden layer is therefore a
feature map: all nodes detect the
same feature in different parts of
the image

 The map is defined by the shared
weights and bias

The shared map is the result of
the application of convolutional
filter (defined by weights and bias)

Carnegie Mellon University 18

CONVOLUTION IMAGE FILTER

164 188 164 161 195

O R N
174 168 181 190 184 0'17

—' -
179 176 185 198 179 176 185 198
. 185 17' 167 185 17' 167 .

Original Image with Image with 3x3 Output
image color values kernel placed image
placed over it over it

Divided by the sum

164 | 188 | 164 o |1)]o of the kernel

178 | 201 197 >< 1 ‘lf | l | 932\5‘: new

174 | 168 | 181 0 ()]0 pixel color
Kernel

Color values

Carnegie Mellon University 19

CONVOLUTION IMAGE FILTER

Lot o |t |0 0o |-1 |o 1 |1 [a
1 1 1 1 4 1 -1 s -1 1|9 |-t
1 1 1 0 1 0 0 -1 0 -1 -1 -1
Unweighted 3x3 Weighted 3x3 smoothing K .
; ; X ernel to make Intensified sharper
smoothing kernel kernel with Gaussian blur image sharper image

Sharpened image

Carnegie Mellon University 20

CONVOLUTION IMAGE FILTER

15781 Fall 2016: Lecture 18 Carnegie Mellon University 21

FILTER BANKS

Why only one filter? (one feature map)

At the i-th hidden layer n filters can be active in parallel
A bank of convolutional filters, each learning a different
feature (different weights and bias)

28 x 28 input neu rons first hidden layer: 3 x 24 x 24 neurons

J
|

« 3 feature maps, each defined by a set of 5x5 shared weights and one bias
 The result is that the network can detect 3 different kinds of features,
with eggh feature being detectable across the entire image.

15781 Fall 2016: Lecture 18 Carnegie Mellon University 22

FILTER BANKS

Learn multiple filters.

E.g.: 1000x1000 image
100 Filters

Filter size: 10x10
10K parameters

75
T
Ranzato t’

Carnegie Mellon University 23

VOLUMES AND DEPTHS

A
f§>©©§>o<|>
Ve LN

Carnegie Mellon University 24

MULTIPLE FEATURE MAPS

output feature map

: / 3D kernel
filter)

77
Input feature maps s
Ranzato*

15781 Fall 2016: Lecture 18 Carnegie Mellon University 25

MULTIPLE FEATURE MAPS

Input feature maps / /

NOTE: the nr. of output feature maps is
usually larger than the nr. of input feature maps

15781 Fall 2016: Lecture 18

output feature maps

// 78
o
Ran7atn"

Carnegie Mellon University 26

NUMERIC EXAMPLE

Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 3x3x3) Output Volume (3x3x2)
X[:,:,0] o[:,:,0]
0 0 0 0 116 2
ol 23 23 i 9 6 3
02 02 12 6 2
0 0 0 0 of:,:,1]
0 2 1 0 =]
ol 2 403
00 0 0 0158 =
X[:,:,1]

0 0 0 0

ol 2

01 0 1

01 1 1

ol 2

ol 2 i

0 0 0 0

Carnegie Mellon University 27

CHARACT:

ECOGNITION EXAMPLE

Darker blocks mean a larger weight, so the feature map
responds more to the corresponding input pixels.
Some spatial correlations are “there”

15781 Fall 2016: Lecture 18

Carnegie Mellon University 28

&
—]
A,
=
<
<
]
O
=
=
O
<
]
&
e
O
=
<t

e
' A\

2 ./v/, > ‘
S8 (AN u, v
N U2 Lo B I .
SR

T

~R

N

L

-E |

Carnegie Mellon University 29

15781 Fall 2016: Lecture 18

POOLING LAYERS

* Pooling layers are usually used immediately after
convolutional layers.

* Pooling layers simplify / subsample / compress the
information in the output from the convolutional layer

* A pooling layer takes each feature map output from the
convolutional layer and prepares a condensed feature map

28 x 28 input neurons 3 X 24 x 24 neurons

| 3 x 12 x 12 neurons

B =

Carnegie Mellon University 30

POOLING LAYERS

hidden neurons (output from feature map)

max-pooling units

3 Each neuron in the
pooling layer
summarizes a region of
nXn neurons in the
previous hidden layer,
which results in
subsampling

00
00

28 X 28 input neurons 3 x 24 x 24 neurons

— 3 x 12 x 12 neurons

.

Carnegie Mellon University 31

MAX-POOLING

How to do pooling?

Max-pooling: a pooling unit simply outputs the mazimum
activation in the input region

Single depth slice 224x224x64
1124 112x112x64
max pool with 2x2 filters pooI
5|16 |7 |8 and stride 2 6 | 8 —
3 | 2 .] 3|4
112 (3| 4

i |

> o 112
224 downsampling
112

224

15781 Fall 2016: Lecture 18 Carnegie Mellon University 32

MAX-POOLING

« Max-pooling as a way for the network to ask whether a given
feature is found anywhere in a region of the image. It then throws
away the exact positional information.

* Once a feature has been found, its exact location isn't as
important as its rough location relative to other features.

* A big benefit is that there are many fewer pooled features, and so

this helps reduce the number of parameters needed in later layers.
224x224x64

112x112x64

pool

_

l |

downsampling
112

Carnegie Mellon University 33

PUTTING ALTOGETHER

28 x 28 3 x24 x 24

— 3 x 12 x 12

l

\
\
1)
l
clololelelelelelele

* The final, output layer is a fully connected one

 The transfer function can be a soft-maz function, to
probabilistically weight each possible output (e.g., for a
classification task)

15781 Fall 2016: Lecture 18 Carnegie Mellon University 34

SOFT-MAX FUNCTION

Zj

Zf:l ek

* The soft-max function o “squashes” a K-dimensional real-
valued vector z to a K-dimensional [0,1| normalized vector

o(z); forj=1, ..., K.

* In the final, fully connected layer, o can be used to express
the probability of the jth component of the output y (e.g,
the probability that the digit in the image sample x is “7”)

(y = Jlx) SK o

Carnegie Mellon University 35

CONVOLUTIONAL NN

(3:fmaps <4. f.maps

(1: Feature Maps 1621010 16@5x5
INPUT 6@28x28 <. (5: Layer ..
. 52: .maps : Layer
SR TPUT1
Ll 6@14x14 SO
[l e a0 1
________ A W)
T T I T Gaussian
. ' Connections
Convolutions Subsampling Convolutions Subsampling Full
Full Connection

Connection

340,098 connections, but only 60,000 free, trainable
parameters thanks to weight sharing

15781 Fall 2016: Lecture 18 Carnegie Mellon University 36

CONVOLUTIONAL NN

RELU RELU RELU RELU RELU RELU
CONV lCONVl CONV lCONVl CONV lCONVl

i e e ot i e e

[=

I

car
frtick

1

WRUGLR]

Qiplane

AT L7 N A 6 A
B b

ghip

|T1~OI’SG

‘¥

Lol
l.'-_"

-
-
-
e |
,_

AR RGYNE

AEEIRLEERE

AN E

http://cs231n.github.io/

@ o, 15781 Fall 2016: Lecture 18 Carnegie Mellon University 37

CONVOLUTIONAL NN

o Convolutions w/ Pooling: Convs: Pooling: Convs: . :
Local Divisive Linear Object

O filter bank: 20x4x4 100x7x7 20xdxd 800x7x7 . Cateqories / Positions
Normalzation 20x7x7 kernels kernels kemels kemels kemels Classifer #90

'.‘.'.'.'.'.'.1 H O }at (xy)

e o L D)

~

§2: 20x123x123

Input Image Normalized Image

1x500x500 1x500x500 | $4: 2012929 I Y@ 'I"“: X
C1: 20x494x494 3 20K 7x117 ,. { &% {)t (xey)
{ \ -~
“Simple cells” C5: 200x23x23

“Complex cells”

Training is supervised

With stochastic gradient
descent
pooling
Multiple v\ subsampling/ [LeCun et al. 89]
convolutions LeCun et al. 98
B Retinotopic Feature Maps [- 98]

15781 Fall 2016: Lecture 18 Carnegie Mellon University 38

CONVOLUTIONAL NN

Parzen Windows Classifier

256 features 1x1
4x4 subsampling

6x6 pooling

>_um + Contrast Norm + Pooling + OoismmBU::@

;I ‘~ :,. '! b/' _p "” A n w o4
RRRRR gh_k_
WALARANN
WO
AN, P
AR s

Filter Bank + Tanh + Gain

Input

high-pass filtered
contrast-normalized
83x83 (raw: 91x91)

CLASSIFIER

STAGE 2

10x10 pooling

STAGE 1

niversity 39

Carnegie Mellon U

Q0
™

)

—

-
=

)

)
—
Ne)
™
-
N
r—
r—

av
[y
™
o0
D~
LO
™

CONVOLUTIONAL NN

Layer 3
256(@6x6 Layer 4

256@1x1 Output

101

Layer 1

, 64x75x75 ~ Layer2
nput 64@14x14
83x83

9x9

9x9 . 10x10 pooling, convolution B 6x6 pooling
convolution 545 subsampling (4096 kernels) —I
(64 earnels} 4x4 subsamp

15781 Fall 2016: Lecture 18 Carnegie Mellon University 40

CONVOLUTIONAL NN

Object Recognition [Krizhevsky, Sutskever; Hinton 2012] Y LeCun

MA Ranzato

Method: large convolutional net
» 650K neurons, 832M synapses, 60M parameters

» Trained with backprop on GPU

» Trained “with all the tricks Yann came up with in
the last 20 years, plus dropout” (Hinton, NIPS
2012)

» Rectification, contrast normalization,...

Error rate: 15% (whenever correct class isn't in top 5)
Previous state of the art: 25% error

A REVOLUTION IN COMPUTER VISION

Acquired by Google in Jan 2013
Deployed in Google+ Photo Tagging in May 2013

15781 Fall 2016: Lecture 18 Carnegie Mellon University 41

LEARNING / OPTIMIZATION?

* Modified back propagation

« CNNs use weight sharing as opposed to feed-forward
networks. During both forward and back-propagation
convolutions have to be used where the weights and the
activations are the functions in the convolution equation.

* Pooling layers do not do any learning themselves hence
during forward pass, the “winning unit” has its index
noted and consequently the gradient is passed back to this
unit during the backward pass in the case of max-pooling

15781 Fall 2016: Lecture 18 Carnegie Mellon University 42

WHICH ACTIVATION FUNCTIONS?

o) =1/(1+e%)

- Squashes numbers to range [0,1]

F - Historically popular since they
have nice interpretation as a
osf saturating “firing rate” of a neuron

2 BIG problems:

; et &y v w9 sy % ow s
. " 3 . 1. Saturated neurons “kill” the
Sigmoid gradients
2. Sigmoid outputs are not zero-
centered

15781 Fall 2016: Lecture 18 Carnegie Mellon University 43

WHICH ACTIVATION FUNCTION?

Consider what happens when the input to a neuron is

always positive... e
gradient
update
directions
I
f E wz CBz —I_ b allowed 219 zag path
- gradient
(] update
directions
hypothetical
What can we say about the gradients on w? optimal w
vector

Always all positive or all negative :(
(this is also why you want zero-mean data!)

15781 Fall 2016: Lecture 18 Carnegie Mellon University 44

WHICH ACTIVATION FUNCTION?

- Squashes numbers to range [-1,1]
AAAAAAA F i - zero centered (nice)
_ - still kills gradients when saturated :(

15781 Fall 2016: Lecture 18 Carnegie Mellon University 45

WHICH ACTIVATION FUNCTION?

/
4 f(z) = max{0, z}
The currently s 5 ,
most popular s e i
choice!
RelLU

15781 Fall 2016: Lecture 18 Carnegie Mellon University 46

WHAT IF I DON’T HAVE MUCH DATA?

* In practice, very few people train an entire Convolutional
Network from scratch (with random initialization)

It is (usually) hard to have a dataset of sufficient size!

« It is common to pretrain (maybe for days/weeks) a CNN
on a very large dataset (e.g. ImageNet, which contains
1.2 million images with 1000 categories), and then use
the trained CNN either as an initialization or a fixed
feature extractor for the task of interest.

 — Transfer learning!

15781 Fall 2016: Lecture 18 Carnegie Mellon University 47

TRANSFER LEARNING SCENARIOS

* Pretrained CNN as fixed feature extractor: remove the last
fully-connected layer, treat the rest of the CNN as a fixed feature
extractor for the new dataset, add the last classification layer,
and retrain the final classifier on top of the CNN

* Fine-tuning the pretrained CNN: As in the previous
scenario, but in addition fine-tune the weights of the pretrained
network by continuing the back-propagation. It is possible to fine-
tune all the layers, or to keep some of the earlier layers fixed
(e.g., to avoid overfitting) and only fine-tune some higher-level
portions of the network (that usually learn features that are more
specific to the training dataset)

15781 Fall 2016: Lecture 18 Carnegie Mellon University 48

PREDICTING POVERTY USING DEEP TRANSFER
LEARNING (ERMON & COLLEAGUES)

Carnegie Mellon University 49

WHAT YOU SHOULD KNOW

* Neural networks & nodes as features
o Internal nodes can be viewed as features
° Make more complicate function mapping input to output
* Benefits of deep over shallow
° Number of parameters need to express complicated function may be way smaller
o Important in terms of amount of data to train / fit classifier

* Nonlinearity: choices, implications for learning
o Sigmoid (bad), ReLu (good)

o Increases ezpressive power (1 hidden layer, universal approximator)
0 Optimization harder (not convex, many local optima)
* How to train/fit/learn
o Gradient descent, backpropagation
o Be able to derive gradient for simple case and use to update w

* New ideas for tackling vision applications

o Convolutional networks

° Reduce # parameters, exploit nodes as filters

° How many parameters are involved?

o Define common node types: conv, pooling, fully connected
* What if we don’t have much data?

o Transfer learning!

o Learn features using big data, then use for other applications

15781 Fall 2016: Lecture 18 Carnegie Mellon University 50

