
CMU 15-781
Lecture 18: 
Deep learning and Vision:
Convolutional neural networks

Teacher:
Gianni A. Di Caro



15781 Fall 2016: Lecture 18

DEEP, SHALLOW, CONNECTED, SPARSE?

2

• Fully connected multi-layer feed-forward perceptrons:
• More powerful than single layer networks: 

𝐹 𝒙 = 𝑓%(𝑓'(𝑓(	 …𝑓+(𝒙)…)))
• Can potentially learn hierarchical feature representations
• A lot of parameters to learn! Need time, CPU, 

optimization algorithms, data, and has to avoid overfitting



15781 Fall 2016: Lecture 18

VISION EXAMPLE

3

• Traditional MLPs receive as input a single 
vector and transforms it through a series 
of (fully connected) hidden layers

• For an image (32w, 32h, 3c), the input 
layer has 32×32×3=3072 neurons, such 
that a single fully-connected neuron in the 
first hidden layer would have 3072 weights 
…

• Two main issues: space-time complexity 
and lack of structure, locality of 
information



15781 Fall 2016: Lecture 18

IMAGES ARE “MULTI-DIMENSIONAL”

4

Have a local 
structure and 
correlations

Have 
distinctive 
features in 

space and in 
frequency 
domains



15781 Fall 2016: Lecture 18

SAME (USEFUL) FEATURES CAN BE
ROTATED, TRANSLATED, SCALED …

5

Finding / Extracting good
features is fundamental in 

vision processing tasks 
But it’s not an easy 

task!



15781 Fall 2016: Lecture 18

BTW ... FEATURES?

6

• Want uniqueness
• Want invariance 

• Geometric invariance: translation, rotation, scale 
• Photometric invariance: brightness, exposure, …

• Leads to unambiguous matches in other images or wrt to 
know entities of interest

• Look for “interest points”: image regions that are unusual
• Typically non-linear, “complex” 
• How to define “unusual”?



15781 Fall 2016: Lecture 18

BTW ... FEATURES?

7



15781 Fall 2016: Lecture 18

SIFT

8

SIFT 
Scale Invariant Feature Transform



15781 Fall 2016: Lecture 18

SIFT

9

SIFT 
Scale Invariant Feature Transform



15781 Fall 2016: Lecture 18

DIFFERENT RECIPES

10

“Classical” 
Pattern recognition

“Hot” 
Convolutional 

Neural Networks



15781 Fall 2016: Lecture 18

CONVOLUTIONAL NNS

11

• Not anymore fully connected
• Locality of processing
• Weight sharing for parameter reduction
• Learn the parameters of multiple convolutional filter banks
• Compress to extract salient features and favor generalization



15781 Fall 2016: Lecture 18

CONVOLUTIONAL NN

http://cs231n.github.io/

12



15781 Fall 2016: Lecture 18

LOCALITY OF INFORMATION: 
RECEPTIVE FIELDS

13

5×5 = 25 
input pixels
How many 

neurons in the 1st

hidden layer?

28×28 = 784 
input image



15781 Fall 2016: Lecture 18

(FILTER) STRIDE

14

Let’s slide the 5×5 mask over all input pixels

Stride length = 1
Any stride can be used … 

with some precautions

How many 
neurons in the 1st

hidden layer?

24×24



15781 Fall 2016: Lecture 18

(FILTER) PADDING

15

Zero padding the edges

Filter

Original input layer 

Resulting hidden layer



15781 Fall 2016: Lecture 18

SHARED WEIGHTS

16

• What is the precise relationship between the neurons in the 
receptive field and that in the hidden layer?

• What is the activation value of the hidden layer neuron?

• 𝜎 is the selected activation function, a are the 
activation values of the neurons in the receptive field

• The same weights w and bias b are used for each of 
the 24×24 hidden neurons 



15781 Fall 2016: Lecture 18

FEATURE MAP

17

• All the neurons in the first hidden layer detect exactly the 
same feature, just at different locations in the input image.

• “Feature”: the kind of input pattern (e.g., a local edge) 
that determine the neuron to ”fire” or, more in general, 
produce a certain response level 

• Why this makes sense? Suppose the weights and bias are 
(learned) such that the hidden neuron can pick out, a 
vertical edge in a particular local receptive field. That 
ability is also likely to be useful at other places in the 
image. And so it is useful to apply the same feature 
detector everywhere in the image.



15781 Fall 2016: Lecture 18

FEATURE MAP

18

• The map from the input layer to 
the hidden layer is therefore a 
feature map: all nodes detect the 
same feature in different parts of 
the image

• The map is defined by the shared 
weights and bias

• The shared map is the result of 
the application of convolutional 
filter (defined by weights and bias)

Same weights!



15781 Fall 2016: Lecture 18

CONVOLUTION IMAGE FILTER

19



15781 Fall 2016: Lecture 18

CONVOLUTION IMAGE FILTER

20



15781 Fall 2016: Lecture 18

CONVOLUTION IMAGE FILTER

21



15781 Fall 2016: Lecture 18

FILTER BANKS

22

Why only one filter? (one feature map)
• At the i-th hidden layer n filters can be active in parallel
• A bank of convolutional filters, each learning a different

feature (different weights and bias)

• 3 feature maps, each defined by a set of 5×5 shared weights and one bias
• The result is that the network can detect 3 different kinds of features, 

with each feature being detectable across the entire image.



15781 Fall 2016: Lecture 18

FILTER BANKS

23



15781 Fall 2016: Lecture 18

VOLUMES AND DEPTHS

24



15781 Fall 2016: Lecture 18

MULTIPLE FEATURE MAPS

25



15781 Fall 2016: Lecture 18

MULTIPLE FEATURE MAPS

26



15781 Fall 2016: Lecture 18

NUMERIC EXAMPLE

27



15781 Fall 2016: Lecture 18

CHARACTER RECOGNITION EXAMPLE

28

Darker blocks mean a larger weight, so the feature map 
responds more to the corresponding input pixels.
Some spatial correlations are “there”



15781 Fall 2016: Lecture 18

A MORE EXCITING EXAMPLE

29



15781 Fall 2016: Lecture 18

POOLING LAYERS

30

• Pooling layers are usually used immediately after 
convolutional layers. 

• Pooling layers simplify / subsample / compress the 
information in the output from the convolutional layer

• A pooling layer takes each feature map output from the 
convolutional layer and prepares a condensed feature map



15781 Fall 2016: Lecture 18

POOLING LAYERS

31

Each neuron in the 
pooling layer 

summarizes a region of 
n×n neurons in the 

previous hidden layer, 
which results in 
subsampling 



15781 Fall 2016: Lecture 18

MAX-POOLING

32

How to do pooling?

Max-pooling: a pooling unit simply outputs the maximum 
activation in the input region



15781 Fall 2016: Lecture 18

MAX-POOLING

33

• Max-pooling as a way for the network to ask whether a given 
feature is found anywhere in a region of the image. It then throws 
away the exact positional information. 

• Once a feature has been found, its exact location isn't as 
important as its rough location relative to other features. 

• A big benefit is that there are many fewer pooled features, and so 
this helps reduce the number of parameters needed in later layers. 



15781 Fall 2016: Lecture 18

PUTTING ALTOGETHER

34

• The final, output layer is a fully connected one
• The transfer function can be a soft-max function, to 

probabilistically weight each possible output (e.g., for a 
classification task)



15781 Fall 2016: Lecture 18

SOFT-MAX FUNCTION

35

• The soft-max function 𝜎 “squashes” a K-dimensional real-
valued vector z to a K-dimensional [0,1] normalized vector

• In the final, fully connected layer, 𝜎 can be used to express 
the probability of the j-th component of the output y (e.g, 
the probability that the digit in the image sample x is “7”) 



15781 Fall 2016: Lecture 18

CONVOLUTIONAL NN

36

340,098 connections, but only 60,000 free, trainable 
parameters thanks to weight sharing



15781 Fall 2016: Lecture 18

CONVOLUTIONAL NN

http://cs231n.github.io/

37



15781 Fall 2016: Lecture 18

CONVOLUTIONAL NN

38



15781 Fall 2016: Lecture 18

CONVOLUTIONAL NN

39



15781 Fall 2016: Lecture 18

CONVOLUTIONAL NN

40



15781 Fall 2016: Lecture 18

CONVOLUTIONAL NN

41



15781 Fall 2016: Lecture 18

LEARNING / OPTIMIZATION?
• Modified back propagation

• CNNs use weight sharing as opposed to feed-forward 
networks. During both forward and back-propagation 
convolutions have to be used where the weights and the 
activations are the functions in the convolution equation.

• Pooling layers do not do any learning themselves hence 
during forward pass, the “winning unit” has its index 
noted and consequently the gradient is passed back to this 
unit during the backward pass in the case of max-pooling

42



15781 Fall 2016: Lecture 18

WHICH ACTIVATION FUNCTIONS?

43



15781 Fall 2016: Lecture 18

WHICH ACTIVATION FUNCTION?

44



15781 Fall 2016: Lecture 18

WHICH ACTIVATION FUNCTION?

45



15781 Fall 2016: Lecture 18

WHICH ACTIVATION FUNCTION?

46

The currently 
most popular 

choice!



15781 Fall 2016: Lecture 18

WHAT IF I DON’T HAVE MUCH DATA?
• In practice, very few people train an entire Convolutional 

Network from scratch (with random initialization)

• It is (usually) hard to have a dataset of sufficient size!

• It is common to pretrain (maybe for days/weeks) a CNN 
on a very large dataset (e.g. ImageNet, which contains 
1.2 million images with 1000 categories), and then use 
the trained CNN either as an initialization or a fixed 
feature extractor for the task of interest. 

• → Transfer learning!

47



15781 Fall 2016: Lecture 18

TRANSFER LEARNING SCENARIOS

• Pretrained CNN as fixed feature extractor: remove the last 
fully-connected layer, treat the rest of the CNN as a fixed feature 
extractor for the new dataset, add the last classification layer, 
and retrain the final classifier on top of the CNN

• Fine-tuning the pretrained CNN: As in the previous 
scenario, but in addition fine-tune the weights of the pretrained
network by continuing the back-propagation. It is possible to fine-
tune all the layers, or to keep some of the earlier layers fixed 
(e.g., to avoid overfitting) and only fine-tune some higher-level 
portions of the network (that usually learn features that are more 
specific to the training dataset)

48



15781 Fall 2016: Lecture 18

PREDICTING POVERTY USING DEEP TRANSFER
LEARNING (ERMON & COLLEAGUES)

49



15781 Fall 2016: Lecture 18

WHAT YOU SHOULD KNOW
• Neural networks & nodes as features

o Internal nodes can be viewed as features
o Make more complicate function mapping input to output

• Benefits of deep over shallow
o Number of parameters need to express complicated function may be way smaller
o Important in terms of amount of data to train / fit classifier 

• Nonlinearity: choices, implications for learning
o Sigmoid (bad), ReLu (good)
o Increases ezpressive power (1 hidden layer, universal approximator)
o Optimization harder (not convex, many local optima)

• How to train/fit/learn
o Gradient descent, backpropagation
o Be able to derive gradient for simple case and use to update w

• New ideas for tackling vision applications
o Convolutional networks
o Reduce # parameters, exploit nodes as filters
o How many parameters are involved?
o Define common node types: conv, pooling, fully connected

• What if we don’t have much data?
o Transfer learning!
o Learn features using big data, then use for other applications

50


