

OUTLINE

1 Machine learning with neural networks . 3

2 Training neural networks . 20

3 Popularity and applications . 37

2

OUTLINE

1 Machine learning with neural networks . 3

2 Training neural networks . 20

3 Popularity and applications . 37

3

SUPERVISED MACHINE LEARNING
CLASSIFICATION SETUP

Input features x(i) ∈ Rn

Outputs y(i) ∈ Y (e.g. R, {−1,+1}, {1, . . . , p})

Model parameters θ ∈ Rk

Hypothesis function hθ : Rn → R

Loss function ` : R× Y→ R+

Machine learning optimization problem

minimize
θ

m∑
i=1

`(hθ(x
(i)), y(i))

4

LINEAR CLASSIFIERS

Linear hypothesis class:
hθ(x

(i)) = θTφ(x(i))

where the input can be any set of non-linear features φ : Rn → Rk

The generic function φ represents some (possibly) selected way to generate non-linear
features out of the available ones, for instance:

x(i) = [temperature for day i]

φ(x(i)) =

1

x(i)

x(i)
2

...

5

GENERAL REPRESENTATION OF
LINEAR CLASSIFICATION

6

CHALLENGES WITH LINEAR MODELS

Linear models crucially depend on choosing “good” features

Some “standard” choices: polynomial features, radial basis functions, random features
(surprisingly effective)

But, many specialized domains required highly engineered special features

E.g., computer vision tasks used Haar features, SIFT features, every 10 years or so
someone would engineer a new set of features

Key question 1: Should we stick with linear hypothesis functions? What about using
non-linear combinations of the inputs? → Feed-forward neural networks (Perceptrons)

Key question 2: can we come up with algorithms that will automatically learn the
features themselves? → Feed-forward neural networks with multiple (> 2!) hidden layers
(Deep Networks)

7

FEATURE LEARNING:
USE TWO CLASSIFIERS IN CASCADE

Instead of a simple linear classifier, let’s consider a two-stage hypothesis class where one
linear function creates the features, another models the classifier and takes as input the
features created by the first one:

hw(x) =W2φ(x) + b2 =W2(W1x+ b1) + b2

where
w = {W1 ∈ Rn×k, b1 ∈ Rk,W2 ∈ R1×k, b2 ∈ R}

Note that in this notation, we’re explicitly separating the parameters on the “constant
feature” into the b terms

8

FEATURE LEARNING:
USE TWO CLASSIFIERS IN CASCADE
Graphical depiction of the obtained function

x1

x2

xn

...

z1

z2

zk

...
y

W1, b1

W2, b2

But there is a problem:

hw(x) =W2(W1x+ b1) + b2 = W̃x+ b̃ (1)

in other words, we are still just using a normal linear classifier: the apparent added
complexity by concatenating multiple is not giving us any additional representational
power, we can only discriminate linearly separable classes

9

ARTIFICIAL NEURAL NETWORKS (ANN)

Neural networks provide a way to obtain complexity by:

1 Using non linear transformations of the inputs

2 Propagating the information among layers of processing units to realize multi-staged
computation

3 In deep networks, the number of stages is relatively large, allowing to automatically
learn hierarchical representations of the data features

x1

x2

xn

...

z1

z2

zk

...
y

W1, b1

W2, b2 z1 = x

...
...

W1, b1

z5... ...

z2 z3 z4

W3, b3

W4, b4

= hθ(x)

W2, b2

10

TYPICAL NON-LINEAR
ACTIVATION FUNCTIONS

Using non-linear activation functions at each node, the two-layer network of the previous
example, become equivalent to have the following hypothesis function:

hθ(x) = f2(W2f1(W1x+ b1) + b2)

where f1, f2 : R→ R are some non-linear functions (applied elementwise to vectors)

Common choices for fi are hyperbolic tangent tanh(x) = (e2x − 1)/(e2x + 1),
sigmoid/logistic σ(x) = 1/(1 + e−x), or rectified linear unit f(x) = max{0, x}

4 3 2 1 0 1 2 3 4
1.0

0.5

0.0

0.5

1.0
tanh

4 3 2 1 0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0
sigmoid

4 3 2 1 0 1 2 3 4
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

relu

11

HIDDEN LAYERS
AND LEARNED FEATURES

We draw these the same as before (non-linear functions are virtually always implied in the
neural network setting)

x1

x2

xn

...

z1

z2

zk

...
y

W1, b1

W2, b2

Middle layer z is referred to as the hidden layer or activations
These are the learned features, nothing in the data that prescribes what values these
should take, left up to the algorithm to decide
To have a meaningful feature learning we need multiple hidden layers in cascade
Networks

12

TYPES OF NETWORKS

13

PROPERTIES OF NEURAL NETWORKS
It turns out that a neural network with a single hidden layer (and a suitably large number
of hidden units) is a universal function approximator, can approximate any function
over the input arguments (but this is actually not very useful in practice, c.f. polynomials
fitting any sets of points for high enough degree)

The hypothesis class hθ is not a convex function of the parameters θ = {Wi, bi}

The number of parameters (weights and biases), layers (depth), topology (connectivity),
activation functions, all affect the performance and capacity of the network

14

DEEP LEARNING

“Deep” neural networks refer to networks with multiple hidden layers

z1 = x

...
...

W1, b1

z5... ...

z2 z3 z4

W3, b3

W4, b4

= hθ(x)

W2, b2

Mathematically, a k-layer network has the hypothesis function

zi+1 = fi(Wizi + bi), i = 1, . . . , k − 1, z1 = x

hw(x) = zk

where zi terms now indicate vectors of output features

15

WHY USE DEEP NETWORKS?

A deep architecture trades space for time (or breadth for depth): more layers (more
sequential computation), but less hardware (less parallel computation).

Many functions can be represented more compactly using deep networks than one-hidden
layer networks (e.g. parity function would require (2n) hidden units in 3-layer network,
O(n) units in O(logn)-layer network)

Motivation from neurobiology: brain appears to use multiple levels of interconnected
neurons to process information (but careful, neurons in brain are not just non-linear
functions)

In practice: works better for many domains

Allow for automatic hierarchical feature extraction from the data

16

HIERARCHICAL FEATURE
REPRESENTATION

17

EXAMPLES OF HIERARCHICAL
FEATURE REPRESENTATION

18

EFFECT OF INCREASING
NUMBER OF HIDDEN LAYERS

Speech recognition task

19

OUTLINE

1 Machine learning with neural networks . 3

2 Training neural networks . 20

3 Popularity and applications . 37

20

OPTIMIZING NEURAL NETWORK
PARAMETERS

How do we optimize the parameters for the machine learning loss minimization problem
with a neural network

minimize
θ

m∑
i=1

`(hθ(x
(i)), y(i))

now that this problem is non-convex?

Just do exactly what we did before: initialize with random weights and run stochastic
gradient descent

Now have the possibility of local optima, and function can be harder to optimize, but we
won’t worry about all that because the resulting models still often perform better than
linear models

21

STOCHASTIC GRADIENT DESCENT FOR
NEURAL NETWORKS

Recall that stochastic gradient descent computes gradients with respect to loss on each
example, updating parameters as it goes

function SGD({(x(i), y(i))}, hθ, `, α)
Initialize: Wj , bj ← Random, j = 1, . . . , k
Repeat until convergence:

For i = 1, . . . ,m:
Compute ∇Wj ,bj `(hθ(x

(i)), y(i)), j = 1, . . . , k − 1

Take gradient steps in all directions:
Wj ←Wj − α∇Wj

`(hθ(x
(i)), y(i)), j = 1, . . . , k

bj ← bj − α∇bj `(hθ(x
(i)), y(i)), j = 1, . . . , k

return {Wj , bj}

How do we compute the gradients ∇Wj ,bj `(hθ(x
(i)), y(i))?

22

BACK-PROPAGATION

Back-propagation is a method for computing all the necessary gradients using one
forward pass (just computing all the activation values at layers), and one backward
pass (computing gradients backwards in the network)

The equations sometimes look complex, but it’s just an application of the chain rule of
calculus and the use of Jacobians

23

JACOBIANS AND CHAIN RULE
For a multivariate, vector-valued function f : Rn → Rm, the Jacobian is a m× n matrix

(
∂f(x)

∂x

)
∈ Rm×n =

∂f1(x)
∂x1

∂f1(x)
∂x2

· · · ∂f1(x)
∂xn

∂f2(x)
∂x1

∂f2(x)
∂x2

· · · ∂f2(x)
∂xn

...
...

. . .
...

∂fm(x)
∂x1

∂fm(x)
∂x2

· · · ∂fm(x)
∂xn

For a scalar-valued function f : Rn → R, the Jacobian is the transpose of the gradient
∂f(x)
∂x

T
= ∇xf(x)

For a vector-valued function, row i of the Jacobian corresponds to the gradient of the
component fi of the output vector, i = 1, . . . ,m. It tells how the variation of each input
variable affects the variation of the output component

Column j of the Jacobian is the impact of the variation of the j-th input variable,
j = 1, . . . , n, on each one of the m components of the output

Chain rule for the derivation of a composite function:

∂f(g(x))

∂x
=
∂f(g(x))

∂g(x)

∂g(x)

∂x

24

MULTI-LAYER / MULTI-MODULE FF
Multi-layered feed-forward architecture
(cascade): module/layer i gets as input the
feature vector xi−1 output from module i− 1,
applies the transformation function Fi(xi−1,Wi),
and produces the output xi

Each layer i contains (Nx)i parallel nodes
(xi)j , j = 1, . . . , (Nx)i. Each node gets the input
from previous layer’s nodes through
(Nx)i−1 ≡ (NW)i connections with weights
(Wi)j , j = 1, . . . , (NW)i

Each layer learns its own weight vector Wi.

Fi is a vector function. At each node j of layer i,
the transformation function is
(Fi)j = f((Wi)

T
j · (xi−1)j) and f is the activation

function (e.g., a sigmoid), that can be safely
considered being the same for all nodes.

In the following the notation is made simpler by
dropping the second indices and reasoning at the
aggregate vector level of each layer.

25

FORWARD PROPAGATION

Forward Propagation:

Following the presentation of the training
input x0, the output vectors xi resulting
from the activation function Fi at all layers
i = 1, . . . , n, are computed in sequence,
starting from x1, and are stored

The output of the network, the loss ` (to be
minimized), results from the forward
propagation at output layer and computing
the deviation with respect to the target Y :

`(Y ,x,W) = C(xn,Y)

26

COMPUTING GRADIENTS

At each iteration of SGD, the gradients with
respect to all the parameters of the system need
to be computed (i.e., the weights Wi, that could
be split in weights for input and weights for bias,
but hereafter we just use the general form Wi)

After the Forward pass, let’s start setting up the
relations for the Backward pass

Let’s consider the generic layer i: from the
Forward propagation, its output value is available
and is xi = Fi(xi−1,Wi)

In addition, let’s assume that we already know

∂`

∂xi
,

that is, we know for each component of the vector
xi the variation of ` in relation to a variation of
xi. We can assume that we know ∂`

∂xi
since we

will proceed backward

27

COMPUTING GRADIENTS
Since we assume as known ∂`

∂xi
and we have

computed xi = Fi(xi−1,Wi), we can use the
chain rule to compute ∂`

∂Wi
, which is the quantity

of interest, and which tells us the variation in ` as
a response to a variation in the weights of Wi:

∂`

∂Wi
=

∂`

∂xi

∂Fi(xi−1,Wi)

∂Wi

where xi is a substitute for Fi(xi−1,Wi)

Dimensionally, the previous equation is as follows:

[1×NW] = [1×Nx] · [Nx ×NW]

∂Fi(xi−1,Wi)

∂Wi
is the Jacobian matrix of Fi with

respect to Wi

The element (k, l) of the Jacobian quantifies the
variation in the k-th output when a variation is
exerted on the l-th weight[

∂Fi(xi−1,Wi)

∂Wi

]
kl

=
∂
[
Fi(xi−1,Wi)

]
k

∂
[
Wi

]
l

28

COMPUTING GRADIENTS

Let’s keep assuming that we known ∂`
∂xi

and let’s use it

this time to compute ∂`
∂xi−1

Applying the chain rule:

∂`

∂xi−1
=

∂`

∂xi

∂Fi(xi−1,Wi)

∂xi−1

Dimensionally, the previous equation is as follows:

[1×Nx] = [1×Nx] · [Nx ×Nx]

∂Fi(xi−1,Wi)

∂xi−1
is the Jacobian matrix of Fi with respect

to xi−1

The element (k, l) of the Jacobian quantifies the
variation in the k-th output when a variation is exerted
on the l-th input

The equation above is a recurrence equation!

29

BACK-PROPAGATION (BP)
To sequentially compute all the gradients needed by
SGD, a backward sweep is applied, which is called the
back-propagation algorithm, that precisely makes
use of the recurrence equation for ∂`

∂xi

1
∂`

∂xn
=
∂C(xn,Y)

∂xn

2
∂`

∂xn−1
=

∂`

∂xn

∂Fn(xn−1,Wn)

∂xn−1

3
∂`

∂Wn
=

∂`

∂xn

∂Fn(xn−1,Wn)

∂Wn

4
∂`

∂xn−2
=

∂`

∂xn−1

∂Fn−1(xn−2,Wn−1)

∂xn−2

5
∂`

∂Wn−1
=

∂`

∂xn−1

∂Fn−1(xn−2,Wn−1)

∂Wn−1

6 . . . until we reach the first, input layer

7 → all the gradients
∂`

∂Wi
, ∀i = 1, . . . , n have been

computed!
30

ACTIVATION FUNCTIONS EXAMPLES
Remember that the transfer function at layer i is Fi(xi−1,Wi) = f

(
W T
i · xi−1

)
, and for

the j-th neuron in layer i,

(Fi)j = f
(
(Wi)

T
j · (xi−1)j

)
=

(Nx)i−1∑
j=1

wij · xi−1,j

where f(·) is the activation function

Linear activation function: f(z) = Az +B

(Fi)j = A · ((Wi)
T
j · (xi−1)j) +B, used in the Forward pass

∂Fi(xi−1,Wi)

∂xi−1
= AWi, used in the Backward pass

Hyperbolic tangent activation function: f(z) = tanh(z) = ez−e−z

ez+e−z

(Fi)j = tanh
(
(Wi)

T
j · (xi−1)j

)
, used in Fw pass

f ′(z) = 1− tanh2(z) → ∂Fi(xi−1,Wi)

∂xi−1
= 1− tanh2(W T

i · xi−1) used in Bw pass

Logistic / sigmoid activation function: f(z) =
1

1 + e−x

(Fi)j = 1

1+e
−(Wi)

T
j

·(xi−1)j
, used in Fw pass

f ′(z) = f(z)(1− f(z)) → ∂Fi(xi−1,Wi)

∂xi−1
= f

(
W T
i ·xi−1

)
· (1− f

(
W T
i ·xi−1)

)
used in

Bw pass

31

NO ARCHITECTURAL CONSTRAINTS

32

AVAILABLE TOOLS

Gradients can still get somewhat tedious to derive by hand, especially for the more
complex models that follow

Fortunately, a lot of this work has already been done for you

Tools like Theano (http://deeplearning.net/software/theano/), Torch
(http://torch.ch/), TensorFlow (http://www.tensorflow.org/) all let you specify the
network structure and then automatically compute all gradients (and use GPUs to do so)

Autograd package for Python (https://github.com/HIPS/autograd) lets you compute the
derivative of (almost) any arbitrary function using numpy operations using automatic
back-propagation

33

http://deeplearning.net/software/theano/
http://torch.ch/
http://www.tensorflow.org/
https://github.com/HIPS/autograd

WHAT’S CHANGED SINCE THE 80S?

Most of these algorithms were developed in the 80s or 90s

So why are these just becoming more popular in the last few years?

More data

Faster computers (GPUs)

(Some) better optimization techniques

34

ISSUES

Vanishing gradients: as we add more and more hidden layers, back-propagation
becomes less and less useful in passing information to the lower layers. In effect, as
information is passed back, the gradients begin to vanish and become small relative to the
weights of the networks.

Each gradient assigns “credit” to each neuron i for the (mis)classification of the input
sample, however, credit depends (backward) on the average error associated to the
neurons that take the output of i, such that going backward the credit has the
tendency to vanish

If the activation function has a gradient “mostly” null, as in the case of sigmoids,
then, again, gradient corrections become very small

Overfitting!

How many layers/nodes? (which is related to overfitting . . .)

Non-convexity (only local minimima can be reached), computation time, . . .

Time complexity of one BP iteration is O(|W |3), which is he input for one iteration of
SGD. No general guarantees on convergence time

35

IDEAS FOR OVERCOMING ISSUES

Hidden layers of autoencoders and RBMs act as effective feature detectors; these
structures can be stacked to form deep networks. These networks can be trained
greedily, one layer at a time, to help to overcome the vanishing gradient and
overfitting problems.

Unsupervised pre-training (Hinton et al., 2006): “Pre-train” the network have the
hidden layers recreate their input, one layer at a time, in an unsupervised fashion

This paper was partly responsible for re-igniting the interest in deep neural networks,
but the general feeling now is that it doesn’t help much

Dropout (Hinton et al., 2012): During training and computation of gradients,
randomly set about half the hidden units to zero (a different randomly selected set for
each stochastic gradient step)

Acts like regularization, prevents the parameters for overfitting to particular examples

Different non-linear functions (Nair and Hinton, 2010): Use non-linearity
f(x) = max{0, x} instead of f(x) = tanh(x)

36

OUTLINE

1 Machine learning with neural networks . 3

2 Training neural networks . 20

3 Popularity and applications . 37

37

1980 1985 1990 1995 2000 2005 2010 2015
0.0

0.1

0.2

0.3

0.4

0.5

0.6
#neural network / #machine learning

Google scholar counts of papers containing “neural network” divided by count of papers
containing “machine learning”

38

Popularization of backprop
for training neural networks

Academic papers on unsupervised
pre-training for deep networks

“AlexNet” deep neural network
wins ImageNet 2012 contest

Facebook launches AI research
center, Google buys DeepMind

A non-exhaustive list of some of the important events that impacted this trend

39

“AlexNet” (Krizhevsky et al., 2012), winning entry of ImageNet 2012 competition with a
Top-5 error rate of 15.3% (next best system with highly engineered features based upon
SIFT got 26.1% error)

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5 ⇥ 5 ⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3 ⇥ 3 ⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224 ⇥ 224 ⇥ 3-dimensional.

5

40

Figure 4: (Left) Eight ILSVRC-2010 test images and the five labels considered most probable by our model.
The correct label is written under each image, and the probability assigned to the correct label is also shown
with a red bar (if it happens to be in the top 5). (Right) Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that produce feature vectors in the last hidden layer with the
smallest Euclidean distance from the feature vector for the test image.

In the left panel of Figure 4 we qualitatively assess what the network has learned by computing its
top-5 predictions on eight test images. Notice that even off-center objects, such as the mite in the
top-left, can be recognized by the net. Most of the top-5 labels appear reasonable. For example,
only other types of cat are considered plausible labels for the leopard. In some cases (grille, cherry)
there is genuine ambiguity about the intended focus of the photograph.

Another way to probe the network’s visual knowledge is to consider the feature activations induced
by an image at the last, 4096-dimensional hidden layer. If two images produce feature activation
vectors with a small Euclidean separation, we can say that the higher levels of the neural network
consider them to be similar. Figure 4 shows five images from the test set and the six images from
the training set that are most similar to each of them according to this measure. Notice that at the
pixel level, the retrieved training images are generally not close in L2 to the query images in the first
column. For example, the retrieved dogs and elephants appear in a variety of poses. We present the
results for many more test images in the supplementary material.

Computing similarity by using Euclidean distance between two 4096-dimensional, real-valued vec-
tors is inefficient, but it could be made efficient by training an auto-encoder to compress these vectors
to short binary codes. This should produce a much better image retrieval method than applying auto-
encoders to the raw pixels [14], which does not make use of image labels and hence has a tendency
to retrieve images with similar patterns of edges, whether or not they are semantically similar.

7 Discussion

Our results show that a large, deep convolutional neural network is capable of achieving record-
breaking results on a highly challenging dataset using purely supervised learning. It is notable
that our network’s performance degrades if a single convolutional layer is removed. For example,
removing any of the middle layers results in a loss of about 2% for the top-1 performance of the
network. So the depth really is important for achieving our results.

To simplify our experiments, we did not use any unsupervised pre-training even though we expect
that it will help, especially if we obtain enough computational power to significantly increase the
size of the network without obtaining a corresponding increase in the amount of labeled data. Thus
far, our results have improved as we have made our network larger and trained it longer but we still
have many orders of magnitude to go in order to match the infero-temporal pathway of the human
visual system. Ultimately we would like to use very large and deep convolutional nets on video
sequences where the temporal structure provides very helpful information that is missing or far less
obvious in static images.

8

Some classification results from AlexNet

41

Google Deep Dream software: adjust input images (by gradient descent) to strengthen the
activations that are present in an image

42

Question answering network (Vinyals and Le, 2015), using sequence to sequence learning
method (Sutskever et al., 2014)A Neural Conversational Model

used for neural machine translation and achieves im-
provements on the English-French and English-German
translation tasks from the WMT’14 dataset (Luong et al.,
2014; Jean et al., 2014). It has also been used for
other tasks such as parsing (Vinyals et al., 2014a) and
image captioning (Vinyals et al., 2014b). Since it is
well known that vanilla RNNs suffer from vanish-
ing gradients, most researchers use variants of Long
Short Term Memory (LSTM) recurrent neural net-
works (Hochreiter & Schmidhuber, 1997).

Our work is also inspired by the recent success of neu-
ral language modeling (Bengio et al., 2003; Mikolov et al.,
2010; Mikolov, 2012), which shows that recurrent neural
networks are rather effective models for natural language.
More recently, work by Sordoni et al. (Sordoni et al., 2015)
and Shang et al. (Shang et al., 2015), used recurrent neural
networks to model dialogue in short conversations (trained
on Twitter-style chats).

Building bots and conversational agents has been pur-
sued by many researchers over the last decades, and it
is out of the scope of this paper to provide an exhaus-
tive list of references. However, most of these systems
require a rather complicated processing pipeline of many
stages (Lester et al., 2004; Will, 2007; Jurafsky & Martin,
2009). Our work differs from conventional systems by
proposing an end-to-end approach to the problem which
lacks domain knowledge. It could, in principle, be com-
bined with other systems to re-score a short-list of can-
didate responses, but our work is based on producing an-
swers given by a probabilistic model trained to maximize
the probability of the answer given some context.

3. Model
Our approach makes use of the sequence-to-sequence
(seq2seq) framework described in (Sutskever et al., 2014).
The model is based on a recurrent neural network which
reads the input sequence one token at a time, and predicts
the output sequence, also one token at a time. During train-
ing, the true output sequence is given to themodel, so learn-
ing can be done by backpropagation. The model is trained
to maximize the cross entropy of the correct sequence given
its context. During inference, given that the true output se-
quence is not observed, we simply feed the predicted output
token as input to predict the next output. This is a “greedy”
inference approach. A less greedy approach would be to
use beam search, and feed several candidates at the previ-
ous step to the next step. The predicted sequence can be
selected based on the probability of the sequence.

Concretely, suppose that we observe a conversation with
two turns: the first person utters “ABC”, and second person
replies “WXYZ”. We can use a recurrent neural network,

Figure 1. Using the seq2seq framework for modeling conversa-
tions.

and train to map “ABC” to “WXYZ” as shown in Figure 1
above. The hidden state of the model when it receives the
end of sequence symbol “<eos>” can be viewed as the
thought vector because it stores the information of the sen-
tence, or thought, “ABC”.

The strength of this model lies in its simplicity and gener-
ality. We can use this model for machine translation, ques-
tion/answering, and conversations without major changes
in the architecture. Applying this technique to conversa-
tion modeling is also straightforward: the input sequence
can be the concatenation of what has been conversed so far
(the context), and the output sequence is the reply.

Unlike easier tasks like translation, however, a model
like sequence-to-sequence will not be able to successfully
“solve” the problem of modeling dialogue due to sev-
eral obvious simplifications: the objective function being
optimized does not capture the actual objective achieved
through human communication, which is typically longer
term and based on exchange of information rather than next
step prediction. The lack of a model to ensure consistency
and general world knowledge is another obvious limitation
of a purely unsupervised model.

4. Datasets
In our experiments we used two datasets: a closed-domain
IT helpdesk troubleshooting dataset and an open-domain
movie transcript dataset. The details of the two datasets are
as follows.

4.1. IT Helpdesk Troubleshooting dataset

In our first set of experiments, we used a dataset which was
extracted from a IT helpdesk troubleshooting chat service.
In this service, costumers face computer related issues, and
a specialist help them by conversing and walking through
a solution. Typical interactions (or threads) are 400 words
long, and turn taking is clearly signaled. Our training set
contains 30M tokens, and 3M tokens were used as valida-
tion. Some amount of clean up was performed, such as
removing common names, numbers, and full URLs.

A Neural Conversational Model

4.2. OpenSubtitles dataset

We also tested our model on the OpenSubtitles
dataset (Tiedemann, 2009). This dataset consists of
movie conversations in XML format. It contains sen-
tences uttered by characters in movies. We applied a
simple processing step removing XML tags and obvi-
ous non-conversational text (e.g., hyperlinks) from the
dataset. As turn taking is not clearly indicated, we treated
consecutive sentences assuming they were uttered by
different characters. We trained our model to predict the
next sentence given the previous one, and we did this for
every sentence (noting that this doubles our dataset size,
as each sentence is used both for context and as target).
Our training and validation split has 62M sentences (923M
tokens) as training examples, and the validation set has
26M sentences (395M tokens). The split is done in such a
way that each sentence in a pair of sentences either appear
together in the training set or test set but not both. Unlike
the previous dataset, the OpenSubtitles is quite large, and
rather noisy because consecutive sentences may be uttered
by the same character. Given the broad scope of movies,
this is an open-domain conversation dataset, contrasting
with the technical troubleshooting dataset.

5. Experiments
In this section, we describe the experimental results with
the two datasets and show some samples of the interac-
tions with the system that we trained. We also compare
the performance of our system against a popular rule-based
bot (CleverBot1) using human evaluations on a set of 200
questions.

5.1. IT Helpdesk Troubleshooting experiments

In this experiment, we trained a single layer LSTM with
1024 memory cells using stochastic gradient descent with
gradient clipping. The vocabulary consists of the most
common 20K words, which includes special tokens indi-
cating turn taking and actor.

At convergence, this model achieved a perplexity of 8,
whereas an n-grammodel achieved 18. Below is a few sam-
ples of simulated troubleshooting sessions for most three
of the most common IT problems (remote access, software
crashes, and password issues). In these conversations,Ma-
chine is our Neural ConversationalModel, andHuman the
human actor interacting with it.

Conversation 1: VPN issues.

Describe your problem: i am having issues ac-
cessing vpn

1http://www.cleverbot.com/

Machine: hi
Human: hello
Machine: could you please let me know what are
the operating systems you are using ?
Human: i am using linux
Machine: ok it was in the ssl vpn on which you
stated it was broken
Machine: please check if you are logged in to
corp network
Machine: what is the error that you are running
please
Human: i am seeing an error related to vpn
Machine: what is the error message that you are
getting when connecting to vpn using network
connect ?
Human: connection refused or something like
that
Machine: may i know the version of network
connect you connect ?
Human: i am not sure i know that
Machine: is the network connect prompting for
any user certificate
Machine: ?
Human: yes
Machine: are you at home or at work at the mo-
ment ?
Machine: office ?
Human: i am at home
Machine: try this
Machine: goto <URL> page and enter your
name and password
Human: done
Machine: try logging in with <NAME> and
check if its working fine now
Human: yes , now it works !
Machine: great
Machine: anything else that i can help
Human: no , that was very useful
Machine: you are other than <NAME> :)
Machine: have a nice night

(The <URL> indeed contains information about vpn ac-
cess.)

Conversation 2: Browser issues.

Describe your problem: browser keeps crashing
Machine: hi
Human: hi
Machine: could you please let me know what is
the operating system you are using ?
Human: linux
Machine: ok this is the issue with the system per-
formance , nasser , tools .
Human: what is that ?

A Neural Conversational Model

4.2. OpenSubtitles dataset

We also tested our model on the OpenSubtitles
dataset (Tiedemann, 2009). This dataset consists of
movie conversations in XML format. It contains sen-
tences uttered by characters in movies. We applied a
simple processing step removing XML tags and obvi-
ous non-conversational text (e.g., hyperlinks) from the
dataset. As turn taking is not clearly indicated, we treated
consecutive sentences assuming they were uttered by
different characters. We trained our model to predict the
next sentence given the previous one, and we did this for
every sentence (noting that this doubles our dataset size,
as each sentence is used both for context and as target).
Our training and validation split has 62M sentences (923M
tokens) as training examples, and the validation set has
26M sentences (395M tokens). The split is done in such a
way that each sentence in a pair of sentences either appear
together in the training set or test set but not both. Unlike
the previous dataset, the OpenSubtitles is quite large, and
rather noisy because consecutive sentences may be uttered
by the same character. Given the broad scope of movies,
this is an open-domain conversation dataset, contrasting
with the technical troubleshooting dataset.

5. Experiments
In this section, we describe the experimental results with
the two datasets and show some samples of the interac-
tions with the system that we trained. We also compare
the performance of our system against a popular rule-based
bot (CleverBot1) using human evaluations on a set of 200
questions.

5.1. IT Helpdesk Troubleshooting experiments

In this experiment, we trained a single layer LSTM with
1024 memory cells using stochastic gradient descent with
gradient clipping. The vocabulary consists of the most
common 20K words, which includes special tokens indi-
cating turn taking and actor.

At convergence, this model achieved a perplexity of 8,
whereas an n-grammodel achieved 18. Below is a few sam-
ples of simulated troubleshooting sessions for most three
of the most common IT problems (remote access, software
crashes, and password issues). In these conversations,Ma-
chine is our Neural ConversationalModel, andHuman the
human actor interacting with it.

Conversation 1: VPN issues.

Describe your problem: i am having issues ac-
cessing vpn

1http://www.cleverbot.com/

Machine: hi
Human: hello
Machine: could you please let me know what are
the operating systems you are using ?
Human: i am using linux
Machine: ok it was in the ssl vpn on which you
stated it was broken
Machine: please check if you are logged in to
corp network
Machine: what is the error that you are running
please
Human: i am seeing an error related to vpn
Machine: what is the error message that you are
getting when connecting to vpn using network
connect ?
Human: connection refused or something like
that
Machine: may i know the version of network
connect you connect ?
Human: i am not sure i know that
Machine: is the network connect prompting for
any user certificate
Machine: ?
Human: yes
Machine: are you at home or at work at the mo-
ment ?
Machine: office ?
Human: i am at home
Machine: try this
Machine: goto <URL> page and enter your
name and password
Human: done
Machine: try logging in with <NAME> and
check if its working fine now
Human: yes , now it works !
Machine: great
Machine: anything else that i can help
Human: no , that was very useful
Machine: you are other than <NAME> :)
Machine: have a nice night

(The <URL> indeed contains information about vpn ac-
cess.)

Conversation 2: Browser issues.

Describe your problem: browser keeps crashing
Machine: hi
Human: hi
Machine: could you please let me know what is
the operating system you are using ?
Human: linux
Machine: ok this is the issue with the system per-
formance , nasser , tools .
Human: what is that ?

43

AlphaGo (Silver et al., 2016) beats Lee Sedol in 5 game competition

44

	Machine learning with neural networks
	Training neural networks
	Popularity and applications

