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CLASSIFICATION PROBLEMS

Sometimes we want to predict discrete outputs rather than continuous

Is the email spam or not? (YES/NO)

What digit is in this image? (0/1/2/3/4/5/6/7/8/9)
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EXAMPLE: CLASSIFYING HOUSEHOLD
APPLIANCES

Differentiate between two refrigerators using their power consumption signatures
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CLASSIFICATION TASKS

Input features: x(i) ∈ Rn, i = 1, . . . ,m

E.g.: x(i) ∈ R3 = (Duration i,Power i, 1)

Output: y(i) ∈ {−1,+1} (binary classification task)
E.g.: y(i) = Is it fridge 1?

Model Parameters: θ ∈ Rn

Hypothesis function: hθ(x) : Rn → R
Returns continuous prediction of the output y, where the value indicates how
“confident” we are that the example is −1 or +1

sign(hθ(x)) is the actual binary prediction

We will focus on linear predictors hθ(x) = xT θ
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CLASSIFIER BEHAVIOR: SCORE
Given an example (x, y), the value

hθ(x) = x
T θ

is termed the score of the classification performed according to the hypothesis function
and current parameters, hθ(x)

Intuitively, the score represents the degree to which the classification is positive or
negative, how confident the classifier is making the prediction

In the context of binary classification with binary features x, the score has a nice
interpretation: it aggregates the contribution of each feature, weighted appropriately.
Each feature “votes” on the classification.
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CLASSIFIER BEHAVIOR: MARGIN
The margin on an example (x, y) is (xT θ)y and represents how (in)correct is the
classification made by θ. The larger the margin, the better.

Non-positive margins correspond to classification errors

Geometrically, if ||θ|| = 1, then the margin of an sample input x is exactly the signed
distance from its feature vector hθ(x) to the decision boundary. In the general case, the
distance of x from the linear boundary is (xT θ)/||θ||

Geometric margin: actual (signed) distance from a point to decision boundary:
(xT θ)

||θ||
y
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EXAMPLE: SEISMIC DATA

x1 = body wave magnitude, x2 = surface wave magnitude
Two features: White = data from earthquakes, black = data
from nuclear tests
The two classes are linearly separable,
hθ(x) = x

T θ = θ2x2 + θ1x1 + θ0x0 where,
x0 = 1, θ0 = −4.9, θ1 = −1.7, θ2 = −1
The classification hypothesis is: sign(hθ(x)) = +1 if
hθ(x) = x

T θ ≥ 0, and -1 otherwise
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LOSS FUNCTIONS

Example, x(i) ∈ R, one single data feature, binary classification task (y(i) ∈ {−1,+1}),
θ = [θ0, θ1]

Linear classifier: hθ(x) = θ1x+ θ0

Loss function ` : R× {−1,+1} → R+

Let’s take ` = (θ0 + θ1x− y)2 and let’s find the values for θ that minimize the loss over
the whole training set
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LOSS FUNCTIONS

Example, x(i) ∈ R, one single data feature, binary classification task (y(i) ∈ {−1,+1}),
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LOSS FUNCTIONS

Example, x(i) ∈ R, one single data feature, binary classification task (y(i) ∈ {−1,+1}),
θ = [θ0, θ1]

Linear classifier: hθ(x) = θ1x+ θ0

Loss function ` : R× {−1,+1} → R+

Let’s take ` = (θ0 + θ1x− y)2 and let’s find the values for θ that minimize the loss over
the whole training set
Do we need a different loss function?
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ACCURACY LOSS FUNCTION
Instead of measuring squared deviations, let’s measure the accuracy of classification
Simplest way to measure loss as (0/1) accuracy is: count the number of mistakes
Again, let’s assume a linear hypothesis function, but this time sign(hθ(x)) is used

`(hθ(x), y) =

{
1 if y 6= sign(hθ(x))
0 otherwise

= 1{y · hθ(x) ≤ 0}

If y(i) and hθ(x(i)) have discording sign (i.e., they disagree on classifying sample x(i),
then their product (i.e., the margin) is negative and {y(i) · hθ(x(i)) ≤ 0} equals to 1 →
add error count

minimize
θ

m∑
i=1

`
(
hθ(x

(i)), y(i)
)
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MINIMIZATION OF ACCURACY LOSS?
Unfortunately, minimizing sum of 0/1 losses leads to a hard optimization problem because
of the characteristics of the step/threshold loss function in the space of the parameters θ

Trying to apply an analytic method fails, as well as applying gradient descent, since the
gradient of ` is zero almost everywhere, except at the step point, where θ · x = 0, and the
gradient is undefined

However, given that the problem is linearly separable, a simple weight update rule exists
that converges to the optimal linear separation

The rule is called the perceptron learning rule. For a single training example
(x(i), y(i)):

θk ← θk + α(y(i) − hθ(x(i)))x
(i)
k

Typically the rule is applied one example at-a-time, choosing the examples at random,
similarly to stochastic gradient descent

Perceptron learning rule is analogous to SGD for linear regression and squared losses

If the problem is not linearly separable, perceptron update rule may not converge.
However, convergence is guaranteed if α decays as O(1/t) and data are presented
randomly.
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PERCEPTRON RULE PERFORMANCE
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SMOOTHING ACCURACY LOSS

Because of the difficulties solving the minimization problem with 0/1, a whole range of
alternative “approximations” to 0/1 loss are used instead

The hard, non-differential step is replaced by a continuous, differentiable function

Hinge loss: `(hθ(x), y) = max{1− y · hθ(x), 0}

Squared hinge loss: `(hθ(x), y) = max{1− y · hθ(x), 0}2

Logistic loss: `(hθ(x), y) = log(1 + e−y·hθ(x))

Exponential loss: `(hθ(x), y) = e−y·hθ(x)
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SMOOTHING ACCURACY LOSS
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Common loss functions for classification. x-axis: Margin!
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HINGE LOSS FUNCTION (SVMS)

Loss = 0 is equivalent to the margin being at least 1

Support Vector Machine (SVM): hinge loss + regularization penalty, linear prediction

minimize
θ

m∑
i=1

max{1− y(i) · x(i)T θ, 0}+ λ
n∑
i=1

θ2i

The regularization penalty is to avoid that parameters get too high values → make
hypothesis simple → here “simplicity” is related to the length of θ

Geometric interpretation: Loss = 0 → (Margin) (xT θ)y ≥ 1 → (Geometric margin)
||θ||−1(xT θ)y ≥ ||θ||−1 → Keeping ||θ|| small is a way to increase the geometric margin

Lagrangian interpretation in terms of constraints on the θs

SVMs are also called max-margin classifiers 15



MAX MARGIN SVM

Slide from Quaid Morris
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LOGISTIC REGRESSION

Logistic regression uses logistic loss

minimize
θ

+

m∑
i=1

log(1 + e−y·x
(i)T θ) + λ

n∑
i=1

θ2i

Intuition: Try to increase margin even when it already exceeds 1
No matter how correct you are predicting, you will have non-zero loss, and so there is still
an incentive (although a diminishing one) to push the margin even larger.
Every single example results in an update of the parameters θ
Again, gradient descent is a reasonable algorithm
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PROBABILISTIC INTERPRETATION OF
LOGISTIC REGRESSION

Like least squares, logistic regression has a probabilistic interpretation
For binary classification problem, suppose that

p(y|x; θ) =
1

1 + exp(−y · hθ(x))

and for each data point x(i), y(i) is sampled randomly from this distribution
Then

minimize
θ

−
m∑
i=1

log p(y(i)|x(i); θ)

≡ minimize
θ

log
(
1 + exp

(
−y(i) · hθ(x(i))

))
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MULTI-CLASS CLASSIFICATION

When classification is not binary y ∈ 0, 1, . . . , k (i.e., classifying digit images), a common
approach is one-vs-all method

Create a new set of y’s for the binary classification problem “is the label of this example
equal to j”?

y(i) =

{
1 if y(i) = j
−1 otherwise

and solve for the corresponding parameter θj

For an input x, classify according to the hypothesis with the highest confidence:
argmaxj hθj (x)
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NON-LINEAR
REGRESSION / CLASSIFICATION

Figures from Piyush Rai
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IDEA OF KERNEL METHODS

Map data to higher dimensions where it exhibits linear patterns
Apply the linear model in the new input space
Mapping = changing the feature representation
Linear classifiers/regressors can be used!

Each example represented by a single
feature x
No linear separator exists for this data

Map each example as x→ {x, x2}
Each example now has two features
(“derived” from the old representation)
Data becomes linearly separable in the
new representation

Figures from Piyush Rai
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NON-LINEAR FEATURE
TRANSFORMATION

Each example represented by two features
x = {x1, x2}

Map each example as
x = {x1, x2} → z = {x21,

√
2x1x2, x22}

Each example now has three features
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Figures from Piyush Rai
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Observed Data
d = 2

Linear regression with second degree polynomial features
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Observed Data
d = 4

Linear regression with fourth degree polynomial features
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Observed Data
d = 30

Linear regression with 30th degree polynomial features
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OVERFITTING

We can either transform feature spaces and use linear hypothesis, or take the feature
spaces as they are given and use non-linear hypothesis

In both cases the complexity of our hypothesis will depend on the number of parameters
and on the functional of the parametric hypothesis function

Given the training data, we can always make the hypothesis more and more “complex” in
order to fit the data better and better

To which extent should we push this way of proceeding?

This would guarantee that the loss on the training data would get smaller and smaller

Is this that we are aiming to?
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GENERALIZATION LOSS AND
EMPIRICAL LOSS

Fundamental problem: we are looking for parameters that optimize

minimize
θ

m∑
i=1

`(hθ(x
(i)), y(i))

but what we really care about is loss of prediction on new examples (x′, y′)
→ Generalization error)

This is the expected loss over all input-output pairs the learning machine will see . . .

To quantify this expectation, we need to define a prior probability distribution
P (X, Y ) over the examples, which we assume as stationary (P doesn’t change)

The expected generalization loss is:

Lgen =
M∑
i=1

`(hθ(x
(i)), y(i))P (x(i), y(i))

But P (X, Y ) is not known, therefore it is only possible to estimate the generalization loss
with the empirical loss on a set of examples m�M :

Lemp =
1

m

m∑
i=1

`(hθ(x
(i)), y(i))
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TRAINING AND VALIDATION LOSS

Fundamental problem: we are looking for parameters that optimize the generalization
loss, using the empirical loss

Solving the minimization problems for the empirical loss not necessarily brings the same
optimal generalization loss because of:

unrealizability: the true hypothesis is not included in the considered universe

variance: resulting from sampling different subsets of the possible data

noise: predictions can differ for the same samples

computational complexity: it might not be feasible to solve the problem to optimality

Divide data into training set (used to find parameters for a fixed hypothesis class hθ),
and validation set (used to choose hypothesis class)

What is the negative effect of doing this?
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Validation set
d = 4

Training set and validation set, fourth degree polynomial
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Training set
Validation set
d = 30

Training set and validation set, 30th degree polynomial: the the loss looks like?
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TRAINING VS. VALIDATION LOSS

General intuition for training and validation loss
..

Loss

.

Model Complexity

.

Training

.

Validation

We would like to choose hypothesis class that is at the “sweet spot” of minimizing
validation loss
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MODEL COMPLEXITY AND
REGULARIZATION

A number of different ways to control “model complexity”

An obvious one we have just seen: keep the number of features (number of parameters)
low

A less obvious method: keep the magnitude of the parameters small
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Intuition: a 30th degree polynomial that passes exactly through many of the data points
requires very large entries in θ
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REGULARIZED LOSS MINIMIZATION
PROBLEM

We can directly prevent large entries in θ by penalizing the magnitude of its entries

Leads to regularized loss minimization problem

minimize
θ

m∑
i=1

`
(
hθ(x

(i)), y(i)
)
+ λ

n∑
i=1

θ2i

where λ ∈ R+ is a regularization parameter that weights the relative penalties of the size
of θ and the loss

Think about imposing a constraint on each parameter → Lagrange multipliers
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Validation set
d = 30

Degree 30 polynomial, with λ = 0 (unregularized)
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d = 30

Degree 30 polynomial, with λ = 1
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EVALUATING ML ALGORITHMS

The proper way to evaluate an ML algorithm (e.g., look at Cross-Validation):

1 Break all data into training/testing sets (e.g., 70%/30%)

2 Break training set into training/validation set (e.g., 70%/30% again)

3 Choose hyperparameters using validation set

4 (Optional) Once we have selected hyperparameters, retrain using all the training set

5 Evaluate performance on the testing set
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USEFUL BOUNDS?

Generalization bounds (how good?):
Given a finite amount of data, if we learn a classifier, can we have a guarantee on how well
that classifier will do on future data?

Sample complexity (how many samples?):
If we require a bound on the classifier accuracy on future data points, can we bound how
many training samples we need to get such a classifier?

Probably Approximately Correct (PAC) model of learning:
Any hypothesis that is seriously wrong will almost certainly be “found out” with high
probability after a small number of examples, because it will make incorrect predictions.

→ Any hypothesis that is consistent with a sufficiently large set of training examples
is unlikely to be seriously wrong

→ The (learned) hypothesis must be probably approximately correct

A PAC learning model provides guarantees on the accuracy of the learning machine when
generalizing from the training examples
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PAC MODEL

Input feature space X

P (X, Y ), distribution over X: unknown but fixed and stationary

Hypothesis space (or Concept class) H of functions (also called concepts)
h :X 7→ {0, 1}

A target function is given for the examples, yt ∈ H

Samples are independent and identically distributed, according to P

Training set of examples Z = {(xi, yt(xi)), i = 1, . . . ,m}
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PAC MODEL

Error rate of a hypothesis h, which is the same as the expected generalization error:

err(h) = PrP (X,Y )[x : h(x) 6= yt(x)]

err(h) is the probability that h missclassifies a new example, that is, the expected
proportion of mistakes the hypothesis will make

Accuracy, ε > 0:
We would like to find a hypothesis h with

err(h) ≤ ε

Such a hypothesis is called approximately correct, meaning that it’s “close” to the real
target function. Technically, it is located inside the ε-ball around the true hypothesis
function. In the hypothesis space H, let’s indicate with HPAC this ball, and with Hbad
everything that lies outside of the ε-ball (the “seriously wrong” hypotheses)

Confidence, δ > 0:
We would like to achieve Pr[err(h) ≤ ε] ≥ 1− δ
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PAC LEARNING ALGORITHM

PAC Learning algorithm/machine/agent L:
A function L : Z 7→ H from the training examples to H, such that for every ε, δ > 0 there
exists a number m0(ε, δ) such that for every m ≥ m0 and every X, if m examples Z are
drawn from P (X, Y ) then:

Pr[err(h) ≥ ε] ≤ 1− δ,

where h ∈ H is the hypothesis learned by L according to Z, that is, L(Z) = h

The hypothesis space H is (PAC-)learnable if there is a learning algorithm L for H

In other words, if a learning algorithm L returns a hypothesis h that is consistent with
at least m0 examples (i.e., it classifies them correctly) then with a probability of at least
1− δ, L has an generalization error of at most ε → It is PAC! (h lies in HPAC)

The number m0(ε, δ) of required samples is the sample complexity of the hypothesis
space, and is independent of P . It depends on the characteristics of H and on X

Unfortunately this bound is typically very large :(
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VALUE OF THE SAMPLE COMPLEXITY

All hypotheses in Hbad are such that the expected generalization error is greater than ε:
err(h) > ε, ∀h ∈ Hbad

What is the probability that a hypothesis h ∈ Hbad is consistent with the first m0

samples? (i.e., it classifies them correctly?)

By definition, err(h) > ε ⇒ The probability that h agrees with a given single example xi
is at most 1− ε: PrP [xi : h(xi) = yt(xi)] ≤ 1− ε

Since all examples are independent, the bound on h being consistent with a set Z of m0

examples is:
PrP [xi, i = 1, . . . ,m0 : h(xi) = yt(xi)] ≤ (1− ε)m0

The probability that Hbad contains at least one consistent hypothesis is bounded by the
sum of the individual probabilities of each hypothesis in Hbad, therefore, from the
previous relation:

P (Hbad contains a consistent hypothesis) ≤ |Hbad|(1− ε)m0 ≤ |H|(1− ε)m0 ≤ |H|e−εm0

where the last inequality derives from a general mathematical bound
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VALUE OF THE SAMPLE COMPLEXITY
We aim to make the probability P (Hbad contains a consistent hypothesis) being less than
a small positive number δ:

|H|e−εm0 ≤ δ

In fact, when this is true, the probability that a hypothesis h is an inconsistent one (i.e.,
belongs to Hbad) after being consistent on m0 samples is less than δ.

In other words, with a probability 1− δ the machine L returns a hypothesis h that has an
expected error rate of at most ε

The required number m0 of samples that guarantees PAC learning when h shows
consistency on all the m0 samples, is found by solving wrt to m0 the inequality
|H|e−εm0 ≤ δ using the logarithms:

m0 ≥
1

ε

(
log

1

δ
+ log |H|

)
m0 is the sample complexity of the hypothesis space H

The sample complexity is ∝ to the log of cardinality of the hypothesis space, such that it
explodes for large numerable spaces and it is not defined for infinite spaces

The concept of VC-dimension extends the notions of analysis of expected the
generalization errors to hypothesis sets of infinite cardinality and provides tighter bounds.
It provides a substitute for the term log |H|
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VALUE OF THE SAMPLE COMPLEXITY

If H is the set of all Boolean functions h :X 7→ {0, 1} and X is an n-dimensional feature
space, then |H| = 22

n
(all possible mappings from n inputs to 2 outputs)

⇒ m0 = O(2n), it grows exponentially with the number of the input features
→ It is necessary to see almost ALL the possible examples!

Intuitively: since H contains all generic mappings h, then, for any set Z of m examples,
the set of hypothesis consistent with Z contains equal numbers of hypotheses that would
classify a new example xm+1 as 0 and as 1
→ to assess something about generalization we would need to see all the possible
examples.

To obtain useful results for generalization to new, unseen examples, one way is to restrict
H, avoiding to be too general. However, this might remove the possibility to have PAC
learning, since H might not include any feasible hypothesis function in the ε-ball.
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BETTER BOUNDS USING
VC-DIMENSION

This is what we will obtain using the VC-dimension. . .
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DEFINITIONS:
SET SHATTERING AND VC-DIMENSION

Shattering: Let H be a hypothesis space (also called a concept class) defined over an
instance (feature) space X. Let Z = {x1,x2, . . . ,xm} ⊆X a subset (of examples) from
the instance space. The concept class H shatters (“to break into pieces”) Z if every
possible function on Z can be represented by some h ∈ H. A function on Z is a mapping
from an input x to an output y.

Restricting the reasoning that follow to binary classification tasks where y ∈ {0, 1}, we
can rephrase it saying that a set of instances Z is shattered by H if for any binary labeling
of the elements in Z there is a consistent hypothesis in H (i.e., there is a choice of the
learning parameters θ such that the training error goes to zero).

The number of possible mappings (i.e., binary labelings) on Z is equal to 2|Z|

Vapnik-Chervonenkis (VC) dimension: V C(H) is the maximum number of points
that can be shattered by H (i.e., the maximum cardinality of a set shattered by H). The
VC-dimension is ∞ is the maximum does not exist.
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SHATTERING 3 POINTS IN R2

WITH CIRCLES
All possible binary labelings of a set Z of three points in the plane

Can we find circle functions that shatter the set for all possible labelings?
Circles must separate the “negative” (blue) labels from the “positive” (white) ones: circles
must either enclose all negatively labeled points without enclosing any positively labeled
point, or vice versa. It does not matter which class is which, since swapping the labels
would only require the classifier to be inverted (i.e., to change sign).
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SHATTERING 3 POINTS IN R2

WITH CIRCLES

Every possible labeling can be covered by a circle, so we can shatter the 3 points set
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SHATTERING 3 POINTS IN R2

WITH CIRCLES

We should be precise when defining the class of functions h we are considering
In this case, the class is h(x1, x2) = a

[
(x1 − c1)2 + (x2 − c2)2

]
− r2, that is circles

centered in (c1, c2) of radius r. The coefficient a can be +1 or -1. If a = +1,
sign(h(x1, x2)) > 0 classifies as “1” the samples falling outside of the circle, and “0” those
falling inside the circle. Vice versa when a < 0.
Therefore, in the case of the example, the circle is around the white (“1”) labeled sample,
but the classifier can still correctly classify the blue (“0”) samples as negative ones using
a = +1.
In general, we can assume that we use functions such that the sign of the classifier can be
inverted
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OTHER SHATTERING EXAMPLES IN 2D
In the first row, h(x1, x2) = x21 + x22 − r2, and the classifier is as usual the sign(h(x1, x2))
function. The last case can’t be shattered, differently from the previous example, since the
parameter a is missing, and the sign function classifies as positive what is outside of the
origin-centered circle, while the white point would lie inside the circle. There is no way to
place a circle centered in the origin such that the two samples are classified correctly: the
circle will always enclose the blue point and classify the white point in the same way. In
general, it doesn’t matter how the two points are placed, such a situation will always arise
since one the two points is necessarily closer to the origin than the other.
In the second row, hθ(x1, x2) = θ1x1 + θ2x2 + θ0. It’s always possible to find a vector θ
such that the function hθ (an oriented line) correctly classifies three points, as long as
they are not collinear (i.e., as long as they are in general positions)
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SHATTERING FOUR POINTS IN 2D
There’s no way to shatter four points using circles, since the labeling in the figure won’t
be feasible for a circle (left)
It’s however possible using ellipsis (center)
There’s no way to shatter four points using lines, again the labeling in the figure is not
achievable by a linear separator (right)
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MEASURING THE VC-DIMENSION
The quantify the VC-dimension of a concept class H over an instance space X:

1 Demonstrate it can shatter one set of size n (lower bound). This does not mean that
H can shatter any set of size n!

2 Demonstrate it cannot shatter any set of size n+ 1 (upper bound). For all
n+ 1-dimensional sets there is (at least) one labeling that can’t be shattered

Over a R2 instance space, a linear classifier (oriented line) hθ(x1, x2) = θ1x1 + θ2x2 + θ0
can shatter sets of 3 points (as long as they are not collinear) but cannot shatter any set
of four points. Therefore, the VC-dimension of a linear learning machine over R2 is 3.

The result can be generalized: the VC-dimension of the set of the oriented hyperplanes in
Rn is n+ 1.

The VC-dimension of axis-aligned hyperplanes is also n+ 1. In fact, as a special case of
the general oriented hyperplanes, it’s possible to find an n-dimensional example, but it
would clearly fail shattering in the n+ 1-dimensional case

Over a R2 instance space, the VC-dimension of general circle functions is 3. Instead, for
origin-centered circles, the VC-dimension is 2 (they can clearly consistently classify set of
one element, but not sets of two elements)

The VC-dimension gives concreteness to the notion of “power” (capacity) of a learning
machine: an upper bound on the number of examples that a class of hypothesis could
consistently classify
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AXIS PARALLEL RECTANGLES IN 2D
X is the set of all points in R2

H is the set of all axis parallel rectangles in 2D
(Left) V C ≥ 3 since there is a placement of 3 points that can be shattered
(Right) V C ≥ 4 since there is a placement of 4 points that can be shattered
(Middle) V C = 4 since for all placements of 5 points, there exists a labeling that can’t be
shattered

Figures from Barnabás Póczos
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INTERVALS ON THE REAL LINE

The concept class is defined by two parameters θ1 and θ2 in [0,1], that define an interval
[θ1, θ2] on the real line. A concept function tags an input sample x ∈ (0, 1) as positive if
θ1 ≤ x ≤ θ2, and negative otherwise.

VC-dim ≥ 2. Selected a sample of 2 points x1 and x2 in (0, 1), we need to show that there
are values of θ1 and θ2 which realize all the possible four labelings:
{(+,+), (−,−), (+,−), (−,+)}.

This is clearly possible as one can place the interval [θ1, θ2] such that the intersection with
the interval [x1, x2] is null, (thus producing (-, -)), or to fully include [x1, x2] (thus
producing (+, +)) or to partially intersect [x1, x2] such that x1 or x2 are excluded (thus
producing the remaining two labelings).

VC-dim cannot be more that 2, since any sample of three points {x1, x2, x3} on the line
(0, 1) cannot be shattered (x1 < x2 < x3). It is sufficient to show that one of the labelings
is not realizable: in particular, the labeling (+, -, +) cannot be realizable by any interval
[θ1, θ2] because if x1, x3 are labeled positive then by definition the interval [θ1, θ2] must
fully include the interval [x1, x3] and since x1 < x2 < x3 then x2 must be labeled positive
as well, which makes the labeling unfeasible.
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ADDITIONAL SOURCES

More examples, as well as an accessible treatment of the topics related to the VC
dimension and PAC learning can be found in
http://www.liaolin.com/Courses/vc-dimension.pdf

The following are the slides from Emma, that summarize the results deriving from the use
of the VC dimension
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