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SOME DEFINITIONS

Improving performance via experience
Formally, A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, it its performance at tasks in T as measured
by P, improves with experience (T. Mitchell)

The ability to perform a task in a situation which has never been encountered
before (Learning → Generalization)
Learning denotes changes in the system that are adaptive in the sense that they enable
the system to do the task or tasks drawn from the same population more efficiently and
more effectively the next time (H. Simon)
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AN APPLICATION SCENARIO:
DIGIT CLASSIFICATION

The task: write a program that, given a 28x28 grayscale image of a digit, outputs the
string representation

Digits from MNIST dataset (http://yann.lecun.com/exdb/mnist/)
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POSSIBLE APPROACHES

One approach, direct modeling: try to write a program by hand that uses your a priori
knowledge of digits to properly classify the images

Alternative method, machine learning: collect a bunch of images and their corresponding
digits, write a program that uses this data to build its own method for classifying images

(More precisely, this is a subset of machine learning called supervised learning)
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A SUPERVISED LEARNING PIPELINE
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UNSUPERVISED LEARNING
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GENERAL ML SCHEME

A Task requires an appropriate mapping from data–described in the language of the
features–to the outputs

Obtaining such a mapping from training data is what constitutes a Learning problem

ML Design: Use the right features (description language), to build the right model, that
achieve the right task according to the desired performance
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GENERAL ML SCHEME

Hypothesis function

Hypotheses space

Performance 
criteria

Labeled 
Unlabeled 

Given (Y/N) 
Errors/Rewards

10



TYPES OF LEARNING

Supervised (inductive) learning (labeled data)
A training data set is given
Training data include target outputs (put by a teacher / supervisor)
→ A precise error measure can be derived

Unsupervised learning (unlabeled data)
A (training) data set is given
Training data does not include target outputs
Aims to find hidden structure, association relationships in data

Reinforcement learning (advisory signal)
Explore to find the data by your own
Gathered data data does not include target outputs, but are associated to
an advisory signal (reward)
Aims to learn an optimal action policy
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TYPES OF LEARNING TASKS

Classification, categorical target: given n possible classes,
to which class each data item belongs to?
Task mapping is t : Fm 7→ Zn,

Binary: Apple or pear? 0 or 1? Slow or fast? Blue or red? Trick or treat?

Multi-class: Apple, or pear, or melon, or potato? 0, or 1, or 2, or . . . 1000?
At rest, or very slow, or slow, or moderate, or fast, or very fast, or warp 1?
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TYPES OF LEARNING TASKS
Regression, numerical target: which is the function that best describes the
(conditional expectation) relation between one or more dependent variables and one or
more independent variables (“predictors”)?
Task mapping is t : Fm 7→ Rn,

Univariate: What is the expected relation between temperature and peak electricity
usage in Pittsburgh? What is the expected relation between age and height in China?

Multi-variate: What is the expected relation between (temperature, time hour, day of
the week) and and peak electricity usage in Pittsburgh? What is the expected
relation between (age, province, domestic income) and height in China?
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TYPES OF LEARNING TASKS

Clustering, hidden target: based on some measure of similarity/dissimilarity, group
data items in n clusters, n is (usually) not known in advance.
Task mapping is t : Fm 7→ Zn,

Given a set of photos, and similarity features (e.g., colors, geometric objects) how can
be the photos clustered? Given a set of students and their scores in the exams, how
to partition them for recommending to work in different IT companies?
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TYPES OF LEARNING TASKS

Finding underlying structure, hidden target: discover relations and correlations
among data.
Task mapping is t : Fm 7→ Zn,

Given a set of photos, find possible relations among sub-groups of them. Given
shopping data of customers at gas station spread in the country, discover relations
that could suggest what to put in the shops and where to locate the items on display.
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A SIMPLE EXAMPLE: PREDICTING
ELECTRICITY USE

What will peak power consumption be in the Pittsburgh area tomorrow?
Collect data of past high temperatures and peak demands

High Temperature (F) Peak Demand (GW)
76.7 1.87
72.7 1.92
71.5 1.96
86.0 2.43
90.0 2.69
87.7 2.50
...

...
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PREDICTING ELECTRICITY USE
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Several days of peak demand vs. high temperature in Pittsburgh
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PREDICTING ELECTRICITY USE:
LINEAR MODEL

Hypothesize model

Peak demand ≈ θ1 · (High temperature) + θ2

for some numbers θ1 and θ2

Then, given a forecast of tomorrow’s high temperature, we can predict the likely peak
demand by plugging it into our model
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LINEAR REGRESSION MODEL

Equivalent to “drawing a line through the data”
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FORMAL LINEAR REGRESSION MODEL

Input features: x(i) ∈ Rn, i = 1, . . . ,m

E.g.: x(i) ∈ R2 =

[
temperature for day i

1

]

Output: y(i) ∈ R (regression task)
E.g.: y(i) ∈ R = {peak demand for day i}

Model Parameters: θ ∈ Rn

Hypothesis function: hθ(x) : Rn → R
Hypothesis function: hθ(x) returns a prediction of the output y, e.g. linear regression

hθ(x) = x
T θ =

n∑
i=1

xiθi

Goal: Learn the (best) parameter vector θ using the available training data x(i), i = 1, . . . ,m
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DO DESIGN CHOICES MATTER?

(c)(a) (b) (d)
x x x x

f(x) f(x) f(x) f(x)
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(PARAMETRIC) HYPOTHESIS SPACE

Linear functions

Polynomials of degree n

Periodic functions

. . . (c)(a) (b) (d)
x x x x

f(x) f(x) f(x) f(x)

A consistent hypothesis agrees will all data

How do we choose among multiple consistent hypothesis? → Ockham’s razor!

Choose the tradeoff between complex hypotheses that fit the training data well and
simpler hypotheses that may generalize better (e.g., the line in (c))

A learning problem is realizable if the hypothesis space contains the true function (but
we don’t know it!)

Tradeoff between expressiveness of a hypothesis space and complexity finding a good
hypothesis within that space

23



LOSS FUNCTIONS
How do we measure how “good” a hypothesis is on the training data?

Typically done by introducing a loss function

` : R× R→ R+

Intuitively, this function outputs a “small” value if hθ(x) is “close” to y (the desired target
output), a large value if it is “far” from y

E.g., for regression, squared loss

` (hθ(x), y) = (hθ(x)− y)2
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THE CANONICAL ML PROBLEM

Given a collection of input features and outputs (x(i), y(i)), i = 1, . . . ,m, and a hypothesis
function hθ, find parameters θ that minimize the sum of losses

minimize
θ

m∑
i=1

`
(
hθ(x

(i)), y(i)
)

Virtually all learning algorithms can be described in this form, we just need to specify
three things:

1 The hypothesis class: hθ

2 The loss function: `

3 The algorithm for solving the optimization problem (often approximately)

25



RETURN TO POWER DEMAND
FORECASTING
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Linear hypothesis class: hθ(x) = xT θ
Squared loss function: `(hθ(y), y) = (hθ(x)− y)2

Resulting optimization problem

minimize
θ

m∑
i=1

`
(
hθ(x

(i)), y(i)
)
≡ minimize

θ

m∑
i=1

(
x(i)T θ − y(i)

)2
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HOW DO WE SOLVE THE LINEAR
REGRESSION PROBLEM?

Gradient descent to solve optimization problem

minimize
θ

m∑
i=1

(
x(i)

T
θ − y(i)

)2
Why GD?
Gradient is given by

∇θ
m∑
i=1

(
x(i)

T
θ − y(i)

)2
=

m∑
i=1

∇θ
(
x(i)

T
θ − y(i)

)2
= 2

m∑
i=1

x(i)
(
x(i)

T
θ − y(i)

)

Gradient descent, repeat: θ ← θ − α
m∑
i=1

x(i)
(
x(i)

T
θ − y(i)

)
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AN ANALYTIC SOLUTION IS ALSO
AVAILABLE

The function is convex, the point where the gradient is 0 is guaranteed to be the global
minimum:

∇θf(θ) =
m∑
i=1

x(i)
(
x(i)

T
θ? − y(i)

)
= 0

=⇒
(
m∑
i=1

x(i)x(i)
T

)
θ? =

m∑
i=1

x(i)y(i)

=⇒ θ? =

(
m∑
i=1

x(i)x(i)
T

)−1( m∑
i=1

x(i)y(i)

)

Squared loss is one of the few cases that such directly solutions are possible, usually need
to resort to gradient descent or other methods
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THE RESULT FOR THE POWER
DEMAND
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GRADIENT DESCENT FOR THE
GENERAL ML PROBLEM

GD can be used for the generic optimization problem in ML:

minimize
θ

m∑
i=1

`(hθ(x
(i)), y(i))

In the case of non convex functions, only a local minimum can be guaranteed
Procedurally, gradient descent then takes the form:

function θ = Gradient-Descent({(x(i), y(i))}, hθ, `, α)
Initialize: θ ← 0
Repeat until convergence

g ← 0
For i = 1, . . . ,m:

g ← g +∇θ`(hθ(x(i)), y(i))
θ ← θ − αg

return θ
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LARGE PROBLEMS:
STOCHASTIC GRADIENT DESCENT

If the number of samples m is large, computing a single gradient step is costly
An alternative approach, stochastic gradient descent (SGD), update the parameters
based upon gradient each sample:

function θ = SGD({(x(i), y(i))}, hθ, `, α)
Initialize: θ ← 0
Repeat until convergence

For i = 1, . . . ,m (randomly shuffle the order):
θ ← θ − α∇θ`(hθ(x(i)), y(i))

return θ

Can be viewed as taking many more steps along noisy estimates of the gradient, and often
converges to a “good” parameter value after relatively few passes over the data set

The value of the function does not decrease monotonically
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ALTERNATIVE LOSS FUNCTIONS

Why did we choose the squared loss function

` (hθ(x), y) = (hθ(x)− y)2?

Some other alternatives

Absolute loss: `(hθ(x), y) = |hθ(x)− y|
Deadband loss: `(hθ(x), y) = max{0, |hθ(x)− y| − ε}, ε ∈ R+
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i
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i
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Squared Loss
Absolute Loss
Deadband Loss

A deviation from the target is penalized in different measure, which has an impact both
on computation and on the quality of the final result
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ALTERNATIVE LOSS FUNCTIONS

For these loss functions, no closed-form expression for θ?, but (sub)gradient descent can
still be very effective
E.g., for absolute loss and linear hypothesis class

Repeat : θ ← θ − α
m∑
i=1

x(i)sign
(
x(i)

T
θ − y(i)

)
Can also solve for non-smooth losses using constrained optimization (and libraries like
cvxpy)
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EFFECT IN POWER PROBLEM
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PROBABILISTIC INTERPRETATION

Suppose that each output y in our data really is equal to the hypothesis function for that
example, hθ(x), just corrupted by Gaussian noise ε

y = hθ(x) + ε

The probability density of a Gaussian variable given by

p(ε) =
1

√
2πσ

exp

(
−
ε2

2σ2

)
Substituting terms, we can use this expression to write the probability of the output y
given the input data features x (parametrized by θ)

p(y|x; θ) =
1

√
2πσ

exp

(
−
(hθ(x)− y)2

2σ2

)
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PROBABILISTIC INTERPRETATION

Consider the joint probability of all training data, and let’s assume that samples are
independent and identically distributed:

p(y(1), . . . , y(m)|x(1), . . . , x(m); θ) =
m∏
i=1

p(y(i)|x(i); θ)

where each p(y(i)|x(i); θ) is a Gaussian posterior
Let’s find the parameters θ that maximize the probability of the observed outputs given
the input data (i.e., let’s choose the hypothesis which is the most probable given the data):

maximize
θ

m∏
i=1

p(y(i)|x(i); θ) ≡ minimize
θ

−
m∑
i=1

log p(y(i)|x(i); θ)

≡ minimize
θ

m∑
i=1

(
log(
√
2πσ) +

1

2σ2
(hθ(x

(i))− y(i))2
)

≡ minimize
θ

m∑
i=1

(hθ(x
(i))− y(i))2
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PROBABILISTIC INTERPRETATION

minimize
θ

m∑
i=1

(hθ(x
(i))− y(i))2

But this is the same as the loss minimization problem!

This is a procedure known as maximum likelihood estimation, a common statistical
technique
Note that we still just pushed the question of “which loss” to “which distribution”

But some distributions, like Gaussian, may have reasonable empirical or theoretical
justifications for certain problems

37



OUTLINE

1 What is machine learning? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Supervised learning: regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Supervised learning: classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 “Non-linear” regression, overfitting, and model selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55

38



CLASSIFICATION PROBLEMS

Sometimes we want to predict discrete outputs rather than continuous
Is the email spam or not? (YES/NO)
What digit is in this image? (0/1/2/3/4/5/6/7/8/9)
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EXAMPLE: CLASSIFYING HOUSEHOLD
APPLIANCES

Differentiate between two refrigerators using their power consumption signatures
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CLASSIFICATION TASKS

Input features: x(i) ∈ Rn, i = 1, . . . ,m

E.g.: x(i) ∈ R3 = (Duration i,Power i, 1)

Output: y(i) ∈ {−1,+1} (binary classification task)
E.g.: y(i) = Is it fridge 1?

Model Parameters: θ ∈ Rn

Hypothesis function: hθ(x) : Rn → R
Returns continuous prediction of the output y, where the value indicates how
“confident” we are that the example is −1 or +1; sign(hθ(x)) is the actual binary
prediction
Again, we will focus initially on linear predictors hθ(x) = xT θ
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LOSS FUNCTIONS

Loss function ` : R× {−1,+1} → R+

y
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x0
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LOSS FUNCTIONS

Loss function ` : R× {−1,+1} → R+

Do we need a different loss function?
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LOSS FUNCTIONS

Loss function ` : R× {−1,+1} → R+

Do we need a different loss function?

y

−1

+1

x0
Least squares
Perfect classifier
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ACCURACY LOSS FUNCTION
The simplest loss (0/1 loss, accuracy): count the number of mistakes we make

`(hθ(x), y) =

{
1 if y 6= sign(hθ(x))
0 otherwise

= 1{y · hθ(x) ≤ 0}
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SMOOTHING ACCURACY LOSS

Unfortunately, minimizing sum of 0/1 losses leads to a hard optimization problem

Because of this, a whole range of alternative “approximations” to 0/1 loss are used instead

Hinge loss: `(hθ(x), y) = max{1− y · hθ(x), 0}

Squared hinge loss: `(hθ(x), y) = max{1− y · hθ(x), 0}2

Logistic loss: `(hθ(x), y) = log(1 + e−y·hθ(x))

Exponential loss: `(hθ(x), y) = e−y·hθ(x)

44



−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

y × hθ(x)

Lo
ss

 

 
0−1 Loss
Hinge Loss
Logistic Loss
Exponential Loss

Common loss functions for classification
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