
CMU 15-781
Lecture 14: 
Integer programming

Teacher:
Gianni A. Di Caro



15781 Fall 2016: Lecture 14

THE OPTIMIZATION UNIVERSE

2

Linear
programming

Quadratic 
programming

Semidefinite 
programming

Convex
problems

Nonconvex
problems

Integer
programming



15781 Fall 2016: Lecture 14

(LINEAR) INTEGER PROGRAMMING: 
FEASIBILITY PROBLEM

• An integer programming (IP) feasibility problem:
o 𝑎"# ∈ ℝ for 𝑖 ∈ 𝑘 = 1, … , 𝑘 , 	𝑗 ∈ ℓ = {1,… , ℓ}
o 𝑏" ∈ ℝ for 𝑖 ∈ [𝑘]
o Decision variables 𝑥# for 𝑗 ∈ [ℓ]

3

find 𝑥9 … , 𝑥ℓ
s.t. ∑ 𝑎"#𝑥# ≤ 𝑏"ℓ

#?9∀𝑖 ∈ 𝑘 , 	
∀𝑗 ∈ [ℓ],		𝑥#∈ ℤ

find 𝒙
s.t. 𝐴𝒙 ≤ 𝒃

		𝒙 ∈ ℤℓ
𝐴 ∈ ℝE×ℓ,𝒃 ∈ ℝE



15781 Fall 2016: Lecture 14

(LINEAR) INTEGER PROGRAMMING: 
OPTIMIZATION PROBLEM

• The canonical formulation optimizes a 
linear objective function 𝒄H𝒙 in the 
following problem form:

4

max ∑ 𝑐#𝑥#ℓ
#?9

s.t. ∀𝑖 ∈ 𝑘 , 	
∀𝑗 ∈ [ℓ],		𝑥# ∈ ℕ ∪ {0}

∑ 𝑎"#𝑥# ≤ 𝑏"ℓ
#?9



15781 Fall 2016: Lecture 14

COMBINATORIAL OPTIMIZATION
PROBLEMS (COPS)

• A COP is an IP optimization problem in which we seek 
to find a solution in a finite set of solutions 

• TSP, VRP, QAP, Set covering, Knapsack, …
• Max or min of an objective function
• A COP can be formulated as a 0-1 integer program, 
𝒙 ∈ {0,1}n

• Any bounded integer, 0 ≤ 𝑥 ≤ 𝑢, can be converted to a 
set of 0-1 variables, 2E ≤ 𝑢 ≤ 2ER9

• E.g., 0 ≤ 𝑥 ≤ 20, 𝑥 = 2S𝑦0 + 29𝑦1 + 2V𝑦2 + 2W𝑦3 + 2Y𝑦4

5



15781 Fall 2016: Lecture 14 6

How can we express
≥ constraints? 

Equality constraints?
Restricted domains?

Min?

≥	→ −	≤
𝐴𝑥 = 𝑏	 ↔ 𝐴𝑥 ≤ 𝑏, 𝐴𝑥	 ≥ 𝑏
𝐴𝑥 ≤ 𝑏	 ↔ 𝐴𝑥 + 𝑠 = 𝑏
𝐴𝑥 ≥ 𝑏	 ↔ 𝐴𝑥 − 𝑠 = 𝑏

𝑀𝑎𝑥	 ↔ −𝑀𝑖𝑛



15781 Fall 2016: Lecture 14

IP IS NOT CONVEX

7

Linear (Convex) programming
ℱ = 𝒙 ∈ ℝℓ:𝐴𝒙 ≤ 𝒃
𝐴 ∈ ℝE×ℓ, 𝒃 ∈ ℝE

Integer programming
ℱ = 𝒙 ∈ ℤℓ: 𝐴𝒙 ≤ 𝒃
𝐴 ∈ ℝE×ℓ, 𝒃 ∈ ℝE



15781 Fall 2016: Lecture 14

IP IS NOT CONVEX

8

x
1

x
2

0

1

2

3

1 2 4 53

x1 + 0.8x2 = 5.8

x1 = 5

z = �
x

1 � 2
x

2
x1 + 8

x2 = 26

x1 = 1

x

1
�
0.
8x

2
=
0.
2

min Z = �x1 � 2x2

s.t. x1 > 1

x1 6 5

x1 + 0.8x2 6 5.8

x1 � 0.8x2 > 0.2

x1 + 8x2 6 26

x1, x2 2 X



15781 Fall 2016: Lecture 14

LP CAN EXPLOIT CONVEXITY

9



15781 Fall 2016: Lecture 14

LP CAN EXPLOIT CONVEXITY

10

max z = f(x1, x2) = 5x1 + 4x2

s.t. 6x1 + 4x2  24

x1 + 2x2  6

�x1 + x2  1

x2  2

x1, x2 � 0



15781 Fall 2016: Lecture 14

GEOMETRY OF IP

11

min ZILP = x2

s.t. 2x1 + x2 > 13

5x1 + 2x2 6 30

�x1 + x2 > 5

x1, x2 2 Z+



15781 Fall 2016: Lecture 14

TIGHT FORMULATIONS:
IP CAN ENJOY CONVEXITY!

12

x
1

x
2

0

1

2

3

1 2 4 53

Conv(X)

Convex hull



15781 Fall 2016: Lecture 14

EXAMPLE: SUDOKU

13

4 6 7
4
6 5

8

1
3
7
2

7 8

1 3

5 9

4 8

9 2

9

5

5 2
1

3



15781 Fall 2016: Lecture 14

EXAMPLE: SUDOKU

14



15781 Fall 2016: Lecture 14

EXAMPLE: SUDOKU (FROM ARIEL)
• For each 𝑖, 𝑗, 𝑘 ∈ [9], binary variable 𝑥E

"# s.t.
𝑥E
"# = 1 iff we put 𝑘 in entry (𝑖, 𝑗)

• For t = 1,… , 27, 𝑆i is a row, column, or 3×3
square

find		𝑥999, … , 𝑥jjj
s.t. ∀𝑡 ∈ 27 , ∀𝑘 ∈ [9],	

∀𝑖, 𝑗, 𝑘 ∈ [9],	𝑥E
"# ∈ {0,1}

15

∑ 𝑥E
"# = 1",# ∈lm

∀𝑖, 𝑗 ∈ 9 , ∑ 𝑥E
"# = 1E∈[j]



15781 Fall 2016: Lecture 14 16

If you have a hard 
time expressing 

something as an IP, 
try using binary 

variables



15781 Fall 2016: Lecture 14 17

SUDOKU is NP-
complete, so we 
“proved” that IP 

feasibility is 
NP-complete!



15781 Fall 2016: Lecture 14

EXAMPLE: FAIR DIVISION
• Players 𝑃 = {1, … , 𝑛} and items 𝐼 = {1, … ,𝑚}
• Player 𝑝 has value 𝑣s" for item 𝑖
• Partition items to bundles 𝐴9, … , 𝐴t
• 𝐴9, … , 𝐴t is envy-free iff ∀𝑝, 𝑝u, ∑ 𝑣s" ≥ ∑ 𝑣s""∈vwx"∈vw

18

$30 $50 $2 $5 $5 $3 $5
$2 $10 $5 $20 $20 $3 $40

1

2

1 2



15781 Fall 2016: Lecture 14

EXAMPLE: FAIR DIVISION

• Variables: 𝑥s" ∈ 0,1 , 𝑥s" = 1 iff i ∈ 𝐴s
• ENVY-FREE as an IP:

19

find 𝑥99, … , 𝑥t{
s.t. ∀𝑝 ∈ 𝑁, ∀𝑝u ∈ 𝑁,	

∀𝑖 ∈ 𝑀,	
∀𝑝 ∈ 𝑁, 𝑖 ∈ 𝑀, 𝑥s" ∈ {0,1}

∑ 𝑣s"𝑥s" ≥ ∑ 𝑣s"𝑥sx""∈}"∈}
∑ 𝑥s" = 1s∈~



15781 Fall 2016: Lecture 14

(ARIEL) APPLICATION: SPLIDDIT

20



15781 Fall 2016: Lecture 14

PHASE TRANSITION

• Imagine the 𝑣s" are drawn independently 
and uniformly at random from [0,1]

• Poll 1: If 𝑚 = 𝑛/2, what is the probability 
that an envy-free allocation exists?
1. 0
2. 2/𝑛
3. 1/2
4. 1

21



15781 Fall 2016: Lecture 14

PHASE TRANSITION

• Imagine the 𝑣s" are drawn independently 
and uniformly at random from [0,1]

• Poll 2: If 𝑚 ≫ 𝑛, what is the probability 
that an envy-free allocation exists?
1. Close to 0
2. Close to 1/3
3. Close to 1/2	
4. Close to 1

22



15781 Fall 2016: Lecture 14

SHARP TRANSITION

23

[Dickerson et al., AAAI 2014]

Given an instance, 
the probability of getting 
an envy-free allocation?

Depends on a single 
parameter:

n/m



15781 Fall 2016: Lecture 14

SHARP TRANSITION

24

[Cheeseman et al., IJCAI 1993]

Critical parameter: average degree in the graph 
Graph coloring



15781 Fall 2016: Lecture 14

IP OPTIMIZATION: KNAPSACK*

25

max Z =

nX

i=1

mX

j=1

pixij

s.t.

nX

i=1

wixij  Wj j = 1, 2, . . . ,m

mX

j=1

xij  1 i = 1, 2, . . . , n

xij 2 {0, 1}, i = 1, 2, . . . , n, j = 1, 2, . . . ,m

Multiple containers

*Optional slide, IP example, not required for the course

Are given n objects and one container of limited capacity W. Each 
object i has a value pi and uses a capacity wi. The goal is to select 
the subset of objects that maximize the sum of the values while no 
exceeding the capacity of the container. 

max Z = p1x1 + p2x2 + . . .+ pnxn

s.t. w1x1 + w2x2 + . . .+ wnxn  W

x1, x2, . . . , xn 2 {0, 1}



15781 Fall 2016: Lecture 14

IP OPTIMIZATION: BIN PACKING*

26

*Optional slide of IP example, not required for the course

min Z =
mP
j=1

bj

s.t.

nP
i=1

pixij 6 qjbj, j = 1, . . . ,m

mP
j=1

xij = 1, i = 1, . . . , n

xij 2 {0, 1}, i = 1, . . . , n, j = 1, . . . ,m

bj 2 {0, 1}, j = 1, . . . ,m

Given n objects, each using a capacity pi , i=1,..,n,  and m
containers (bins) of limited capacity qj, j=1,..,m, the goal is to 
group all the n objects minimizing the number of bins that are used 
out of the m available ones, and respecting their capacity limits 



15781 Fall 2016: Lecture 14

IP OPTIMIZATION: SET COVERING*

27

x

x

x

x

x

x

x

x

x

x

x

x

1

2

3

4

5

R

min Z = x1 + x2 + x3 + x4 + x5 + x6

s.t. x1 + x2 + x5 > 1
x1 + x3 > 1

x2 + x4 > 1
x3 + x6 > 1

x2 + x3 + x6 > 1
x1, x2, x3, x4, x5 x6 2 {0, 1}

*Optional slide, IP example, not required for the course

min Z =
kP

j=1
cjxj

s.t.

kP
j=1

aijxj > 1, 8i = 1, . . . ,m

xj 2 {0, 1}, 8j = 1, . . . , k

Are given a set of k “activities” A, and a 
set of m “requirements” R. Each activity 
j can “cover” one or more requirements 
with a cost cj . Select a subset of the 
activities such that all requirements are 
covered by at least one activity and the 
total cost is minimized

A1  2   3   4   5   6



15781 Fall 2016: Lecture 14

max ∑ 𝑐#𝑥#ℓ
#?9

s.t.

IP VS. LP
• Denote the optimal 

solutions of the two 
programs by OPT�� and 
OPT��

• Poll 3: Which 
statement is true?
1. OPT�� ≤ OPT��
2. OPT�� ≥ OPT��
3. OPT�� = OPT��
4. OPT��	||	OPT��

28

IPmax ∑ 𝑐#𝑥#ℓ
#?9

s.t. ∀𝑖 ∈ 𝑘 , 	
∀𝑗 ∈ ℓ ,		𝑥#∈ {0,1}

∑ 𝑎"#𝑥# ≤ 𝑏"ℓ
#?9

LP

∀𝑖 ∈ 𝑘 , 	
∀𝑗 ∈ ℓ ,		𝑥#∈ [0,1]

∑ 𝑎"#𝑥# ≤ 𝑏"ℓ
#?9



15781 Fall 2016: Lecture 14

LP IS A RELAXATION OF IP

29

IP LP

RLP provides an UPPER BOUND (UB) on the optimal value of P

Original IP Problem (Primal, P):

max ZP = c

T
x

s.t. Ax  b

x 2 Zn+
0

Relaxed LP Problem (RLP):

max ZRLP = c

T
x

s.t. Ax  b

x 2 Rn+
0

If the problem is a min one, then RLP provides a 
LOWER BOUND (LB) on the optimal value of P

Z⇤
P  Z⇤

RLP

Z⇤
P � Z⇤

RLP

Easier 
to solve!



15781 Fall 2016: Lecture 14

CASES FOR LP SOLUTIONS VS. IP

30

1. UB: RLP has an optimal solution of the form                              
x*RLP = (x1, x2, …, xn) such that, for at least one k∈{1,..n}, 
xk∈ℝ ⇒ x*RLP is not feasible for P, but x*RLP ≥ x*P

2. Feasible solution: RLP has an optimal solution of the form             
x*RLP = (x1, x2, …, xn) such that ∀k ∈ {1,..n}, xk∈ℤ0

+

⇒ x*RLP is feasible for P, and x*RLP = x*P

3. No solution (unfeasible): RLP does not have a solution         
→ also P has no solution 

4. No solution (unbounded): RLP is unbounded (+∞)               
→ P is either unfeasible or unbounded → does not have a 
finite solution (“almost” true)



15781 Fall 2016: Lecture 14

SOLVING IPS

• n integer variables each taking m values: O(mn) 
solutions → Complete enumeration cannot be 
afforded (IP is NP-complete/hard)

• Implicit (intelligent) enumeration: cover all 
possible solutions by explicitly evaluating only a 
small subset of them

• Divide and conquer → Branch and bound

31



15781 Fall 2016: Lecture 14

SOLVING IPS
• Divide and conquer: Divide the (finite) problem domain 

into a series of easier to solve sub-problems that are 
systematically generated by branching on variables, and 
are fathomed (understood and closed) (conquer). 

• The procedure can be applied recursively until all the 
solutions are implicitly evaluated

32



15781 Fall 2016: Lecture 14

SOLVING IPS

33

Every parent node “contains” the solutions of all its children

Original IP
Sub-problem 1: 

Original IP +
fixing x1 = 0

Sub-problem 2:
Original IP +
fixing x1 = 1

Branching
on x1

IP



15781 Fall 2016: Lecture 14

SOLVING IPS
• In principle every sub-problem needs to be solved

• If the original IP has n variables, the sub-problems at 
the level k of the search tree have n-k free variables, 
and k fixed ones

• Sub-problems are progressively “easier” compared to the 
original IP since they involve less variables to assign, 
but still they can be too difficult 

• Branch and bound effectively prunes the search tree 
by exploiting the properties of a relaxation

34



15781 Fall 2016: Lecture 14

BRANCH AND BOUND: IDEAS

1.Branch on variables to systematically generate new sub-problems
2. Solve sub-problems using a relaxation (e.g., LP!), which is “easy” 

(polynomial time) and therefore can be applied to solve a large 
number of sub-problems

3. The result from a relaxed sub-problem allows to define a bound
on the quality of the solutions that can be obtained by expanding 
the sub-problem.

4. Bounds are used to prune the tree, removing all the potential 
children of a fathomed sub-problem

35



15781 Fall 2016: Lecture 14

SUB-PROBLEM FATHOMING
AND BB TREE PRUNING

A sub-problem SP is fathomed, and its children branch in the 
tree can be pruned, if one of the following conditions is satisfied 
(according to the fact that SP “contains” all its children solutions):

1. SP is unfeasible (has no solution) → Fathomed by unfeasibility
2. SP’s optimal solution is IP feasible → Fathomed by integrality
3. The bound (UB/LB) obtained from solving SP shows that the 

solutions that can be obtained from expanding SP cannot be 
better than the best incumbent solution for P (or the bound 
estimated from external heuristics)  → Fathomed by bound

36



15781 Fall 2016: Lecture 14

INCUMBENT SOLUTION ↔
DYNAMICALLY UPDATED LB (UB)
• The value of all IP-feasible solutions obtained by solving 

the SPs is recorded while the BB search progresses

• At each step k, the best of the IP-feasible solutions 
generated so far by SPs (or generated by external 
heuristics) is the current incumbent solution 𝒁�k to the IP 
(i.e., the current candidate to be the optimal solution)

• At step k, the incumbent solution is the best known LB 
for the (max) IP (i.e., we know that Z*IP at least must be 
equal to 𝒁�k)

37



15781 Fall 2016: Lecture 14

DYNAMICALLY UPDATED UB (MAX)
• The objective value Z*SP0 of the root node establishes an upper 

bound on the optimal objective, Z*IP, because the feasible region 
of SP0 contains all integer feasible solutions to IP

• Child node objective values are no better than those of their 
parent, since a child consist of (parent + fix-a-variable-value)

• → Objective values keep decreasing from Z*SP0 along the branches

• It is apparent that, at every step, a better integer solution can 
only be produced by the children of currently unexplored nodes

• → At every step, Z*IP can be no better than the objective value 
(the UB) of best unexpanded sub-problem (the tree leafs)

• → The best objective of leaf nodes dynamically defines an UB!

38



15781 Fall 2016: Lecture 14

INTEGRALITY GAP AND OPTIMALITY
• Each new incumbent defines a better LB to IP (max problem)
• The best UB from current leaf nodes defines a better UB to IP

• This progresses monotonically: the distance (or the ratio) between 
the LB and the UB defines the current relative (MIP) gap

(max) Gapk = 	
��#���t���t��{��ti���	 E

|�t��{��ti���|E
= 	 �����	 E|��|E

(min) Gapk = 	
��#���t���t��{��ti���	 E

|�t��{��ti���|E
= 	 �����	 E|��|E

39

• At optimality → Gap = 0
• Branch and bound guarantees to find the optimal solution
• BB finishes when (Gap =0) ∨ (All nodes are fathomed)  



15781 Fall 2016: Lecture 14

BRANCH AND BOUND

40

𝑥9

𝑥V

𝑥W

𝑥Y

← 0					1 →

15.10

10.25

8 10.25

7.2 9.75

8 −∞

14.55

14.5514

13.4 −∞

SP0

SP1

SP2 SP3

SP4 SP5

SP6 SP7

SP8

SP9 SP10

SP11 SP12

SP 2,6,9 fathomed by integrality
SP 4, 11 fathomed by bound 
SP 7, 12 fathomed by infeasibility

Z*IP = 14



15781 Fall 2016: Lecture 14

GAP EVOLUTION

41

SP 0 1 2 3 4 5 6 7 8 9 10 11 12
LB -∞ -∞ 8 8 8 8 8 8 8 14 14 14 14

UB 15.1 15.1 15.1 15.1 15.1 15.1 15.1 15.1 14.55 14.55 14.55 14.55 14.55

← 0					1 →

15.10

10.25

7.2 9.75

14.55

14.5514

13.4

SP1

SP2 SP3

SP4 SP5

SP6 SP7

SP8

SP9 SP10

SP11 SP12



15781 Fall 2016: Lecture 14

BEYOND 0-1 VARIABLES:
A GENERAL INTEGER PROBLEM

42



15781 Fall 2016: Lecture 14

BRANCHING ON A VARIABLE
TAKING FRACTIONAL VALUES

43



15781 Fall 2016: Lecture 14

BB TREE

44

Order selected
for node expansion

2

3

1



15781 Fall 2016: Lecture 14

DIFFERENT NODE SELECTIONS

45



15781 Fall 2016: Lecture 14

DESIGN CHOICES

46

• BB is guaranteed to find the optimal solution, but in an 
exponential worst-case time! Design choices matters…

• Branching rules: which variable select next for branching?
• Bound calculation: how to evaluate the solutions of a sub-

problem? Which relaxation should be used?
• Tree exploration strategy: how to select the sub-problem to 

solve next?
• Availability of feasible solutions for fathoming: use of 

external heuristics  to get useful bound? When do apply such 
heuristics during the BB process?

• Termination criteria: which quality/time/convergence criteria?



15781 Fall 2016: Lecture 14

TREE EXPLORATION STRATEGIES

47

• Depth First: LIFO, solve the most recently generated node 
first, then backtrack and plunge into another depth first
• Fast to reach feasible solutions (rapidly reaching leafs) 
• Optimize memory (many nodes closed by feasibility)
• Risk: fully explore sub-trees with low quality solutions 

• Breadth First: generate and solve all the nodes at the same 
level before going to the next level
• Require a queue data structure
• # of open nodes grows exponentially with search depth
• Used rarely in practice 



15781 Fall 2016: Lecture 14

TREE EXPLORATION STRATEGIES

48

• Best Bound First: the most promising node is chosen, that is, 
the node with the best bound (for max, the higher UB)
• Usually, it allows to reduce the number of expanded nodes 

compared to DF
• It doesn’t really dive into the tree, since it tends to stay 

where problems are less constrained (i.e., bounds are more 
promising) 

• It’s hard to quickly find good feasible solutions for 
fathoming, such that the number of open problems is 
usually quite large

• Hybrid combinations: DF at the beginning to obtain good 
feasible solutions, and after a mixture of BBF and DF 



15781 Fall 2016: Lecture 14

EXAMPLE USING DF

49



15781 Fall 2016: Lecture 14

EXAMPLE USING BBF

50



15781 Fall 2016: Lecture 14

COMMERCIAL IP SOLVERS

51

IBM ILOG CPLEX Gurobi



15781 Fall 2016: Lecture 14

OTHER IPS: COMING SOON

52

Dodgson’s 
voting rule

Stackelberg
security games



15781 Fall 2016: Lecture 14

SUMMARY
• Terminology:

o Integer programs / linear programs
• Big ideas:

o IP representation leads to “efficient” 
solutions

o Phase transition ⇔ complexity
o LP as an “admissible” heuristic
o Intelligent implicit enumeration: 

Branch and bound

53


